我们建议承担义义歧义(WSD)的问题。在语言中,相同形式的单词可能取决于上下文。虽然人类可以通过他们的上下文轻松推断出这些单词的含义或光泽,但机器偶然地推断出这个任务。我们打算在黄等人的结果上复制和扩展他们设计消除这些词语的模型(Huang等人。,2019)。具体来说,我们提出了以下增强:数据集调整(Alpha Hyper-参数),集合方法,用BART和Albert更换BERT。以下GitHub存储库包含本报告中使用的所有代码,它延伸到Huang等人提供的代码。
translated by 谷歌翻译
我们展示了一个新的开源和可扩展知识提取工具包,称为Deepke(基于深度学习的知识提取),支持标准完全监督,低资源少拍摄和文档级方案。 Deepke实现了各种信息提取任务,包括命名实体识别,关系提取和属性提取。使用统一的框架,DeePke允许开发人员和研究人员根据其要求,自定义数据集和模型以从非结构化文本中提取信息。具体而言,DeePke不仅为不同的任务和场景提供了各种功能模块和模型实现,而且还通过一致的框架组织所有组件以维持足够的模块化和可扩展性。此外,我们在\ URL {http://deepke.zjukg.cn/}中介绍一个在线平台,用于实时提取各种任务。 Deepke已经配备了Google Colab教程和初学者的综合文件。我们用演示视频发布\ url {https://github.com/zjunlp/deepke}源代码。
translated by 谷歌翻译
数字医学图像的机器学习和流行的最新进展已经开辟了通过使用深卷积神经网络来解决挑战性脑肿瘤细分(BTS)任务的机会。然而,与非常广泛的RGB图像数据不同,在脑肿瘤分割中使用的医学图像数据在数据刻度方面相对稀缺,但在模态属性方面包含更丰富的信息。为此,本文提出了一种新的跨模型深度学习框架,用于从多种方式MRI数据分段脑肿瘤。核心思想是通过多模态数据挖掘丰富的模式以弥补数据量表不足。所提出的跨型号深度学习框架包括两个学习过程:跨模型特征转换(CMFT)过程和跨模型特征融合(CMFF)过程,其目的是通过跨越不同模态的知识来学习丰富的特征表示数据和融合知识分别来自不同的模态数据。在Brats基准上进行了综合实验,表明,与基线方法和最先进的方法相比,所提出的跨模型深度学习框架可以有效地提高大脑肿瘤分割性能。
translated by 谷歌翻译
自我关注在捕获远程关系时,在提高视觉任务的表现,例如图像分类和图像标题等方面,突出的能力。然而,自我关注模块高度依赖于查询键值特征之间的点产品乘法和维度对齐,这导致两个问题:(1)点产品乘法导致穷举和冗余计算。 (2)由于视觉特征图通常出现作为多维张量,重塑张量特征的尺度,以适应尺寸对齐可能会破坏张量特征图的内部结构。为了解决这些问题,本文提出了一种具有其变体的自我关注插入模块,即合成张量变换(STT),用于直接处理图像张量特征。如果在查询键值之间计算点 - 产品乘法,则基本STT由张量转换组成,以从视觉信息中学习合成注意力。 STT系列的有效性在图像分类和图像标题上验证。实验表明,建议的STT实现了竞争性能,同时保持鲁棒性与基于视觉任务的自我关注相比。
translated by 谷歌翻译
区分观点的重要性已经证明对半监督多视图学习模型非常有用。但是,现有策略不能利用半监督信息,只区分从数据特征的角度来看视图的重要性,这通常受到低质量观点的影响,然后导致性能差。在本文中,通过建立标记数据与不同视图的重要性之间的联系,我们提出了一种自动加权策略来评估从标签视角来评估视图的重要性,以避免不重要或低质量视图的负面影响。基于此策略,我们提出了一种转导半监督自动加权多视图分类模型。可以通过标记的数据有效地确定所提出的模型的初始化,这是实用的。该模型分离为三个小规模的子问题,可以通过局部收敛保证有效地优化。分类任务的实验结果表明,与其他相关方法相比,该方法以最低计算成本实现最佳或次优的分类精度,重量变更实验表明,我们所提出的策略可以比其他相关策略更准确地区分视图重要性在具有低质量视图的多视图数据集上。
translated by 谷歌翻译
我们专注于视觉接地管道语言与位置之间的混淆偏见,在那里我们发现偏差是主要的视觉推理瓶颈。例如,接地过程通常是一种琐碎的语言 - 位置关联,没有视觉推理,例如,将任何包含绵羊的语言查询接地到近中心区域,由于绵羊在图像中心的地面真实位置存在地面真相位置。首先,我们将视觉接地管道框架框成了因果图,其显示图像,查询,目标位置和底层混淆之间的因果关系。通过因果图,我们知道如何打破接地瓶颈:Deconfounded视觉接地。其次,为了解决混乱的挑战,即一般而言,我们提出了一种呼吁呼吁:引用表达式解构器(红色),以消除混淆偏差。第三,我们实施红色作为一种简单的语言关注,可以以任何接地方法应用。在流行的基准测试中,红色通过显着的边缘改善了各种最先进的接地方法。代码将很快提供:https://github.com/jianqiangh/deconfounded_vg。
translated by 谷歌翻译
生成一组高质量的对应关系或匹配是点云注册中最关键的步骤之一。本文通过共同考虑点对立的结构匹配来提出学习框架COTREG,以预测3D点云登记的对应关系。具体地,我们将这两个匹配转换为基于Wasserstein距离和基于Gromov-Wasserstein距离的优化。因此,建立对应关系的任务可以自然地重塑成耦合的最佳运输问题。此外,我们设计一个网络,以预测点云的每个点的置信度,其提供重叠区域信息以产生对应关系。我们的对应预测管道可以很容易地集成到基于学习的特征,如FCGF或FPFH等传统描述符。我们在3DMATCH,KITTI,3DCSR和ModelNet40基准上进行了全面的实验,显示了所提出的方法的最先进的性能。
translated by 谷歌翻译
随着智能机器人的广泛渗透,在多种领域,机器人中的同时定位和映射(SLAM)技术在社区中引起了不断的关注。然而,由于机器人的密集图形计算和机器人的有限计算能力之间的性能矛盾,在多个机器人上的合作仍然仍然具有挑战性。虽然传统的解决方案来到功能作为外部计算提供商的强大云服务器,但我们通过实际测量显示数据卸载中的显着通信开销可以防止其实际部署。为了解决这些挑战,本文将新兴边缘计算范例促进到多机器人SLAM中,提出了一种多机器人激光器SLAM系统,该系统专注于在机器人边缘云架构下加速映射施工过程。与传统的多机器人SLAM相比,在机器人上生成图形地图并完全合并它们在云上,recslam开发了一个分层地图融合技术,将机器人的原始数据指向用于实时融合的边缘服务器,然后发送到云端全球合并。为了优化整体管道,引入了一种有效的多机器人SLAM协作处理框架,以便自适应地优化针对异构边缘资源条件的机器人到边缘卸载,同时确保边缘服务器之间的工作量平衡。广泛的评估表明康复伍列可以通过最先进的延迟减少达到39%的处理延迟。此外,在真实场景中开发并部署了概念验证原型,以展示其有效性。
translated by 谷歌翻译
广义的组成零射限学习意味着学习零射时的属性对象对的概念,其中模型在一组看到的概念上培训并在一组组合和看不见的概念上测试。此任务非常具有挑战性,因为不仅是所见和看不见的概念之间的差距,而且是属性和对象之间的上下文依赖性。本文介绍了一种新的方法,称为翻译概念嵌入,解决统一框架中的这两个困难。它模拟将属性应用于对象的效果,如将翻译属性要素添加到对象原型。通过生成有条件地依赖于对象原型的翻译属性功能,我们显式明确地考虑了属性和对象之间的上下文依赖性。此外,我们设计了一个比率方差约束损失,以促进模型对看不见的概念的泛化能力。它通过利用预训练字嵌入的知识来规范概念之间的距离。我们根据无偏见和偏见的概念分类任务评估我们模型的表现,并表明我们的模型能够在预测看不见和看到的概念方面实现良好的平衡。
translated by 谷歌翻译
丙酸的主要靶标是递归地将所需分子分解成可用的构件块。现有的基于模板的逆转性方法遵循模板选择刻板印象并遭受有限训练模板,这可以防止它们发现新的反应。为了克服限制,我们提出了一种创新的retrosynesp预测框架,可以撰写超出训练模板的新型模板。据我们所知,这是第一种可以找到用于逆转金属预测的新型模板的方法。此外,我们提出了一种有效的反应物候选候选模型,可以捕获原子级变换信息,并有助于我们的方法优于现有方法,通过大边距。实验结果表明,我们的方法可以在USPTO-50K数据集中生产328个测试反应的新型模板,包括训练模板未涵盖的21个测试反应。
translated by 谷歌翻译