近年来,深入学习的蓬勃发展的开花目睹了文本认可的快速发展。但是,现有的文本识别方法主要用于英语文本,而忽略中文文本的关键作用。作为另一种广泛的语言,中文文本识别各种方式​​都有广泛的应用市场。根据我们的观察,我们将稀缺关注缺乏对缺乏合理的数据集建设标准,统一评估方法和现有基线的结果。为了填补这一差距,我们手动收集来自公开的竞争,项目和论文的中文文本数据集,然后将它们分为四类,包括场景,网络,文档和手写数据集。此外,我们在这些数据集中评估了一系列代表性的文本识别方法,具有统一的评估方法来提供实验结果。通过分析实验结果,我们令人惊讶地观察到识别英语文本的最先进的基线不能很好地表现出对中国情景的良好。由于中国文本的特征,我们认为仍然存在众多挑战,这与英文文本完全不同。代码和数据集在https://github.com/fudanvi/benchmarking-chinese-text-recognition中公开使用。
translated by 谷歌翻译
过度平滑是一个具有挑战性的问题,这会降低深图卷积网络(GCNS)的性能。然而,用于缓解过度平滑问题的现有研究缺乏一般性或有效性。在本文中,我们分析了过度平滑问题背后的潜在问题,即特征 - 多样性退化,梯度消失和模型重量衰减。灵感来自于此,我们提出了一个简单而有效的即插即用模块,速度,缓解过度平滑。具体地,对于GCN模型的每个中间层,随机地(或基于节点度)选择节点以通过直接向非线性函数馈送它们的输入特征来跳过卷积操作。分析,1)跳过卷积操作可以防止特征失去多样性; 2)“跳过”节点使能梯度直接传递回来,从而减轻梯度消失和模型权重过腐蚀问题。为了展示Skipnode的优越性,我们对九个流行的数据集进行了广泛的实验,包括同性恋和异化图,在两个典型的任务上具有不同的图表大小:节点分类和链路预测。具体而言,1)SkipNode具有适应不同数据集和任务的各种基于GCN的模型的普遍性。 2)Skipnode优于最近最先进的反平滑插头 - 播放模块,即DropEdge和Dropnode,在不同的设置中。代码将在GitHub上公开提供。
translated by 谷歌翻译
许多历史地图表将公开可用于需要长期历史地理数据的研究。这些地图的制图设计包括地图符号和文本标签的组合。从地图图像自动读取文本标签可以大大加快地图解释,并有助于生成描述地图内容的丰富元数据。已经提出了许多文本检测算法以自动定位地图图像中的文本区域,但大多数算法都在Off-Offain数据集(例如,景区图像)上培训。培训数据确定机器学习模型的质量,并在地图图像中手动注释文本区域是劳动力广泛且耗时的。另一方面,现有的地理数据源(例如Open-StreetMap(OSM))包含机器可读地图图层,允许我们分开文本图层并轻松获取文本标签注释。但是,OSM地图瓷砖和历史地图之间的制图样式显着不同。本文提出了一种自动生成无限量的注释历史地图图像的方法,用于训练文本检测模型。我们使用风格转移模型将当代地图图像转换为历史风格,并将文本标签放在上面。我们表明,最先进的文本检测模型(例如,PSENET)可以从合成历史地图中受益,并对历史地图文本检测进行显着改进。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
建模各种时空依赖项是识别骨架序列中人类动作的关键。大多数现有方法过度依赖于遍历规则或图形拓扑的设计,以利用动态关节的依赖性,这是反映远处但重要的关节的关系不足。此外,由于本地采用的操作,因此在现有的工作中探索了重要的远程时间信息。为了解决这个问题,在这项工作中,我们提出了LSTA-Net:一种新型长期短期时空聚合网络,可以以时空的方式有效地捕获长/短距离依赖性。我们将我们的模型设计成纯粹的分解体系结构,可以交替执行空间特征聚合和时间特征聚合。为了改善特征聚合效果,还设计和采用了一种通道明智的注意机制。在三个公共基准数据集中进行了广泛的实验,结果表明,我们的方法可以在空间和时域中捕获长短短程依赖性,从而产生比其他最先进的方法更高的结果。代码可在https://github.com/tailin1009/lsta-net。
translated by 谷歌翻译
准确的动物姿势估计是了解动物行为的重要步骤,并且可能有利于许多下游应用,例如野生动物保护。以前的作用仅关注特定动物,同时忽略动物物种的多样性,限制泛化能力。在本文中,我们提出了哺乳动物动物姿势估计的第一个大规模基准的AP-10K,以促进动物姿势估计的研究。 AP-10K由10,015张图像组成,并在分类规模和54种物种之后从23个动物家庭和54种物种,标有标记和检查的高质量Keypoint注释。基于AP-10K,我们在以下三个轨道上基准代表姿态估计模型:(1)监督动物姿势估计的学习,(2)从人类姿势估计到动物姿势估计的跨域转移,和(3) - 看不见的动物的家庭间域概括。实验结果为学习的优越性从精度和泛化能力方面提供了关于从不同的动物物种的学习的优势提供的声音。它开辟了促进动物姿势估计未来研究的新方向。 AP-10K公开提供HTTPS://github.com/alexthebad/ap10k。
translated by 谷歌翻译
自动疼痛识别对于医学诊断和治疗至关重要。现有工程分为三类:评估面部外观变化,利用生理线索,或以多模态的方式融合它们。然而,(1)外观变化很容易受到阻碍客观疼痛识别的主观因素的影响。此外,基于外观的方法忽略了对于随时间建模表达的远程空间依赖性。 (2)通过在人体上附着传感器来获得生理学提示,这不方便和不舒服。在本文中,我们提出了一种新的多任务学习框架,其以非接触方式编码外观变化和生理线索以进行疼痛识别。该框架能够通过所学习的外观表示的提出的注意机制来捕获局部和远程依赖性,这是通过在辅助任务中从视频中恢复的恢复的时间上富集的富集。该框架被称为RPPG的时空关注网络(RSTAN),并允许我们在公开的止痛数据库上建立非接触疼痛识别的最先进的性能。它展示了RPPG预测可以用作辅助任务,以便于非接触自动疼痛识别。
translated by 谷歌翻译
由于缺乏培训数据和异质知识来源,知识接地的对话系统是挑战的。由于培训数据中涵盖的有限主题,现有系统在不良主题上表现不佳。此外,异构知识源使系统概括到其他任务的系统,因为不同知识表示中的知识来源需要不同的知识编码器。为了解决这些挑战,我们呈现插头,将不同知识来源均匀化为知识接地的对话生成任务的统一知识来源的语言模型。插头在对话生成任务上进行预先培训,调节统一的基本知识表示。它可以通过一些培训示例概括到不同下游知识接地的对话一代任务。两个基准测试的实证评估表明,我们的模型越好跨越不同的知识接地任务。它可以在完全监督的设置下实现具有最先进的方法的可比性,并且显着优于零拍摄和少量拍摄设置中的其他方法。
translated by 谷歌翻译
卷积神经网络(CNNS)在许多实际应用中成功了。但是,它们的高计算和存储要求通常使它们难以在资源受限的设备上部署。为了解决这个问题,已经提出了许多修剪算法用于CNN,但大多数人不能将CNNS提交给合理的水平。在本文中,我们提出了一种基于递归最小二乘(RLS)优化的训练和修剪CNN的新颖算法。在为某些时期培训CNN之后,我们的算法组合了逆输入自相关矩阵和权重矩阵,以按层评估和修剪不重要的输入通道或节点层。然后,我们的算法将继续培训修剪的网络,并且在修剪的网络恢复旧网络的完整性能之前,不会进行下一次修剪。此外,对于CNN,所提出的算法可用于前馈神经网络(FNN)。在MNIST,CIFAR-10和SVHN数据集上的三个实验表明,我们的算法可以实现更合理的修剪,并且具有比其他四个流行的修剪算法更高的学习效率。
translated by 谷歌翻译
由于视频帧之间的庞大本地冗余和复杂的全局依赖性,这是一种具有挑战性的任务。该研究的最近进步主要由3D卷积神经网络和视觉变压器推动。虽然3D卷积可以有效地聚合本地上下文来抑制来自小3D邻域的本地冗余,但由于接收领域有限,它缺乏捕获全局依赖性的能力。或者,视觉变压器可以通过自我关注机制有效地捕获远程依赖性,同时具有在每层中所有令牌之间的盲目相似性比较来降低本地冗余的限制。基于这些观察,我们提出了一种新颖的统一变压器(统一机),其以简洁的变压器格式无缝地整合3D卷积和时空自我关注的优点,并在计算和准确性之间实现了优选的平衡。与传统的变形金刚不同,我们的关系聚合器可以通过在浅层和深层中学习本地和全球令牌亲和力来解决时空冗余和依赖性。我们对流行的视频基准进行了广泛的实验,例如动力学-400,动力学-600,以及某种东西 - 某种东西 - 某种东西 - 某种东西 - 某种东西。只有ImageNet-1K预磨料,我们的统一器在动力学-400 /动力学-600上实现了82.9%/ 84.8%的前1个精度,同时需要比其他最先进的方法更少的gflops。对于某些东西而言,我们的制服分别实现了新的最先进的表演,分别实现了60.9%和71.2%的前1个精度。代码可在https://github.com/sense-x/uniformer获得。
translated by 谷歌翻译