准确的动物姿势估计是了解动物行为的重要步骤,并且可能有利于许多下游应用,例如野生动物保护。以前的作用仅关注特定动物,同时忽略动物物种的多样性,限制泛化能力。在本文中,我们提出了哺乳动物动物姿势估计的第一个大规模基准的AP-10K,以促进动物姿势估计的研究。 AP-10K由10,015张图像组成,并在分类规模和54种物种之后从23个动物家庭和54种物种,标有标记和检查的高质量Keypoint注释。基于AP-10K,我们在以下三个轨道上基准代表姿态估计模型:(1)监督动物姿势估计的学习,(2)从人类姿势估计到动物姿势估计的跨域转移,和(3) - 看不见的动物的家庭间域概括。实验结果为学习的优越性从精度和泛化能力方面提供了关于从不同的动物物种的学习的优势提供的声音。它开辟了促进动物姿势估计未来研究的新方向。 AP-10K公开提供HTTPS://github.com/alexthebad/ap10k。
translated by 谷歌翻译