视觉和听觉信息对于确定视频中的显着区域都是有价值的。深度卷积神经网络(CNN)展示了应对视听显着性预测任务的强大能力。由于各种因素,例如拍摄场景和天气,源训练数据和目标测试数据之间通常存在适度的分布差异。域差异导致CNN模型目标测试数据的性能降解。本文提前尝试解决视听显着性预测的无监督域适应问题。我们提出了一种双重域交流学习算法,以减轻源数据和目标数据之间的域差异。首先,建立了一个特定的域歧视分支,以对齐听觉功能分布。然后,这些听觉功能通过跨模式自我发项模块融合到视觉特征中。设计了其他域歧视分支,以减少视觉特征的域差异和融合视听特征所隐含的视听相关性的差异。公共基准测试的实验表明,我们的方法可以减轻域差异引起的性能降解。
translated by 谷歌翻译
寻找统一的复杂性度量和样本效率学习的算法是增强学习研究的核心主题(RL)。 Foster等人最近提出了决策估计系数(DEC)。 (2021)作为样品有效的NO-REGRET RL的必要和足够的复杂度度量。本文通过DEC框架朝着RL的统一理论取得了进步。首先,我们提出了两项​​新的DEC类型复杂性度量:探索性DEC(EDEC)和无奖励DEC(RFDEC)。我们表明,它们对于样本有效的PAC学习和无奖励学习是必要的,因此扩展了原始DEC,该DEC仅捕获了无需重新学习。接下来,我们为所有三个学习目标设计新的统一样品效率算法。我们的算法实例化估计到决策的变体(E2D)元算法具有强大而通用的模型估计值。即使在无重组的设置中,我们的算法E2D-TA也会在Foster等人的算法上提高。 (2021)需要对DEC的变体进行边界,该变体可能是过于大的,或者设计特定问题的估计值。作为应用程序,我们恢复了现有的,并获得了使用单个算法的各种可拖动RL问题的新样品学习结果。最后,作为一种连接,我们根据后采样或最大似然估计重新分析了两种现有的基于乐观模型的算法,表明它们在与DEC相似的结构条件下具有与E2D-TA相似的遗憾界限。
translated by 谷歌翻译
大规模的地方认可是一项基本但具有挑战性的任务,在自主驾驶和机器人技术中起着越来越重要的作用。现有的方法已经达到了可接受的良好性能,但是,其中大多数都集中精力设计精美的全球描述符学习网络结构。长期以来忽略了特征概括和描述后的特征概括和描述符的重要性。在这项工作中,我们提出了一种名为GIDP的新方法,以学习良好的初始化并引起描述符,以供大规模识别。特别是,在GIDP中分别提出了无监督的动量对比度云预处理模块和基于重新的描述符后增强模块。前者旨在在训练位置识别模型之前对Point Cloud编码网络进行良好的初始化,而后来的目标是通过推理时间重新掌握预测的全局描述符。在室内和室外数据集上进行的广泛实验表明,我们的方法可以使用简单和一般的点云编码主干来实现最先进的性能。
translated by 谷歌翻译
激活函数是元素的数学函数,在深神经网络(DNN)中起着至关重要的作用。已经提出了许多新颖和复杂的激活功能来提高DNN的准确性,但在训练过程中还可以通过反向传播消耗大量记忆。在这项研究中,我们提出了嵌套的正向自动分化(正向AD),专门针对用于记忆效率的DNN训练的元素激活函数。我们在两个广泛使用的深度学习框架(Tensorflow和Pytorch)中部署了嵌套的AD,分别支持静态和动态计算图。我们的评估表明,在相同的记忆降低率下,嵌套的前AD嵌套将记忆足迹降低到1.97倍,比基线模型降低了20%。
translated by 谷歌翻译
尽管促进机器学习(ML)公平的最新进展激增,但现有的主流方法主要需要培训或填充神经网络的整个权重以满足公平标准。但是,由于较大的计算和存储成本,低数据效率和模型隐私问题,对于那些大规模训练的模型来说,这通常是不可行的。在本文中,我们提出了一种称为FairreProgragr的新的通用公平学习范式,该范式结合了模型重编程技术。具体而言,Fairreprogrogram考虑了固定的神经模型,而是将输入一组扰动(称为公平触发器)附加到,该触发触发器在Min-Max公式下朝着公平标准调整为公平触发器。我们进一步介绍了一个信息理论框架,该框架解释了为什么以及在什么条件下,使用公平触发器可以实现公平目标。我们从理论和经验上都表明,公平触发器可以通过提供错误的人口统计信息来有效地掩盖固定ML模型的输出预测中的人口偏见,从而阻碍模型利用正确的人口统计信息来进行预测。对NLP和CV数据集进行的广泛实验表明,与在两个广泛使用的公平标准下,基于培训成本和数据依赖性的基于重新培训的方法相比,我们的方法可以实现更好的公平性改进。
translated by 谷歌翻译
作为最成功的AI驱动应用程序之一,推荐系统的目的是通过在我们生活的许多方面提供个性化建议,以有效而有效的方式帮助人们做出适当的决定,尤其是针对各种面向人类的在线服务,例如E-商务平台和社交媒体网站。在过去的几十年中,推荐系统的快速发展通过创造经济价值,节省时间和精力以及促进社会利益,从而使人类受益匪浅。但是,最近的研究发现,数据驱动的推荐系统可能会对用户和社会构成严重威胁,例如传播虚假新闻以操纵社交媒体网站中的公众舆论,扩大不公平为代表性不足的团体或在工作匹配服务中的个人,或从建议结果中推断隐私信息。因此,系统的可信赖性一直吸引着各个方面的关注,以减轻推荐系统引起的负面影响,以增强公众对推荐系统技术的信任。在这项调查中,我们提供了可信赖的推荐系统(TREC)的全面概述,特别关注六个最重要的方面;即安全与鲁棒性,非歧视与公平,解释性,隐私,环境福祉以及问责制和可审计性。对于每个方面,我们总结了最近的相关技术,并讨论了潜在的研究方向,以帮助未来实现值得信赖的推荐系统。
translated by 谷歌翻译
在骨科手术期间,通常在移动C臂系统下进行金属植入物或螺钉的插入。由于金属的衰减很大,因此在3D重建中发生了严重的金属伪像,从而极大地降低了图像质量。为了减少工件,已经开发了许多金属伪像还原算法,并且在投影域中涂上金属是必不可少的步骤。在这项工作中,基于分数的生成模型在模拟的膝关节投影上进行了训练,并通过在条件重采样过程中删除噪声来获得成分图像。结果暗示,与基于分数的生成模型对图像具有更详细的信息,并获得了与基于插值和基于CNN的方法相比,达到最低的平均绝对误差和最高峰值信号到噪声。此外,基于分数的模型还可以用大圆形和矩形掩模恢复预测,从而显示其在介入任务中的概括。
translated by 谷歌翻译
基于注意力的神经网络在许多AI任务中都普遍存在。尽管其出色的算法性能,但注意力机制和前馈网络(FFN)的使用仍需要过多的计算和内存资源,这通常会损害其硬件性能。尽管已经引入了各种稀疏变体,但大多数方法仅着重于缓解算法级别上的二次注意力缩放,而无需明确考虑将其方法映射到真实硬件设计上的效率。此外,大多数努力仅专注于注意机制或FFN,但没有共同优化这两个部分,导致当前的大多数设计在处理不同的输入长度时缺乏可扩展性。本文从硬件角度系统地考虑了不同变体中的稀疏模式。在算法级别上,我们提出了Fabnet,这是一种适合硬件的变体,它采用统一的蝴蝶稀疏模式来近似关注机制和FFN。在硬件级别上,提出了一种新颖的适应性蝴蝶加速器,可以在运行时通过专用硬件控件配置,以使用单个统一的硬件引擎加速不同的蝴蝶层。在远程 - ARENA数据集上,FabNet达到了与香草变压器相同的精度,同时将计算量减少10到66次,参数数量为2至22次。通过共同优化算法和硬件,我们的基于FPGA的蝴蝶加速器在归一化到同一计算预算的最新加速器上达到了14.2至23.2倍的速度。与Raspberry Pi 4和Jetson Nano上优化的CPU和GPU设计相比,我们的系统在相同的功率预算下的最大273.8和15.1倍。
translated by 谷歌翻译
COVID-19的传播表明,在不同的城市和社区之间,传播风险模式不是同质的,各种异质特征会影响传播轨迹。因此,对于预测性大流行监测,至关重要的是,在城市和社区中探索潜在的异质特征,以区分其特定的大流行扩散轨迹。为此,这项研究创建了一个网络嵌入模型,捕获跨县的访问网络以及异质特征,以根据其大流行传播轨迹来发现美国县的集群。我们从3月3日至2020年6月29日(初始波浪)收集了2,787个县的位置智能特征。其次,我们构建了一个人类访问网络,该网络将县特征作为节点属性和县之间的访问作为网络边缘。我们的归因网络嵌入方法整合了跨县访问网络的类型学特征以及异质性特征。我们对属性网络嵌入进行了聚类分析,以揭示与四个县群相对应的差异风险轨迹的四种原型。随后,我们确定了四个功能是原型之间独特的传输风险模式的重要特征。归因的网络嵌入方法和发现识别并解释了整个县的非殖民性大流行风险轨迹进行预测性大流行监测。这项研究还为大流行分析的基于数据驱动和深度学习的方法有助于补充大流行病政策分析的标准流行病学模型。
translated by 谷歌翻译
在许多现实世界中的机器学习应用中,亚种群的转移存在着极大地存在,指的是包含相同亚种群组的培训和测试分布,但在亚种群频率中有所不同。重要性重新加权是通过对训练数据集中每个样本施加恒定或自适应抽样权重来处理亚种群转移问题的正常方法。但是,最近的一些研究已经认识到,这些方法中的大多数无法改善性能,而不是经验风险最小化,尤其是当应用于过度参数化的神经网络时。在这项工作中,我们提出了一个简单而实用的框架,称为“不确定性感知混合”(UMIX),以根据样品不确定性重新加权“混合”样品来减轻过度参数化模型中的过度拟合问题。基于训练 - 注射器的不确定性估计为每个样品的拟议UMIX配备,以灵活地表征亚群分布。我们还提供有见地的理论分析,以验证UMIX是否在先前的工作中实现了更好的概括界限。此外,我们在广泛的任务上进行了广泛的经验研究,以验证我们方法的有效性,既有定性和定量。
translated by 谷歌翻译