最大熵的原理是一种广泛适用的技术,用于计算可能最少的信息的分布,同时约束以匹配经验估计的特征期望。但是,在许多使用噪声传感器计算功能期望的现实世界中,由于对相关模型变量的部分观察,该功能期望可能具有挑战性。例如,执行学徒学习的机器人可能会因环境阻塞而忽视其正在学习的代理。我们表明,在将最大熵的原理概括为这些类型的情况时,我们不可避免地将对学习模型的依赖性引入了经验特征期望。我们介绍了不确定的最大熵的原理,并提出了从潜在最大熵原理中概括的基于期望最大化的解决方案。最后,我们在实验上证明了我们技术在最大因果熵逆增强学习域中提供的嘈杂数据的鲁棒性。
translated by 谷歌翻译
多个代理的分布式任务分配引发了基本和新的控制理论和机器人问题。新的挑战是开发分布式算法,它动态地将任务分配给多个代理,而不是依赖于先前的分配信息。这项工作提出了一种基于消息到期的验证方法的多机器人任务管理的分布式方法。我们的方法通过使用基于距离和时间戳的测量来处理分布式多机器人系统中的断开引起的冲突,以验证每个机器人的任务分配。机器人模拟器平台中的仿真实验已经验证了所提出的方法的有效性。
translated by 谷歌翻译
群机器人执行觅食任务的适用性受其紧凑的尺寸和成本的启发。需要相当大量的能量来执行这些任务,特别是如果任务是连续和/或重复的。现实世界的情况,其中机器人在保持活力(生存能力)时连续执行任务,并最大限度地提高生产(性能)需要能量意识。本文提出了一种能够有意识的分布式任务分配算法来解决连续任务(例如,无限觅食),用于合作机器人以实现高效的任务。当食物返回收集箱时,我们将效率视为机器人在勘探和收集期间消耗的能量的函数。最后,所提出的节能算法最小化了充电站的总传输时间和在充电时消耗的时间消耗,最大化机器人的寿命,以执行最大的任务,以提高协作机器人的整体效率。我们对典型的贪婪基准战略(将最近的收藏箱分配给可用机器人的最近的收集箱并最大充电)效率和性能在各种方案中的效率和性能。拟议的方法显着提高了基线方法的性能和效率。
translated by 谷歌翻译
变压器注意机制中的设计选择,包括弱电感偏置和二次计算复杂性,限制了其用于建模长序列的应用。在本文中,我们介绍了一个简单的,理论上的,单头的门控注意机制,配备了(指数)移动平均线,以将局部依赖性的电感偏置纳入位置 - 敏锐的注意机制中。我们进一步提出了一个具有线性时间和空间复杂性的大型变体,但通过将整个序列分为固定长度的多个块,仅产生最小的质量损失。对广泛的序列建模基准测试的广泛实验,包括远距离竞技场,神经机器翻译,自动回归语言建模以及图像和语音分类,表明,巨人比其他序列模型取得了重大改进,包括变种物的变体和最新的变体模型状态空间模型。
translated by 谷歌翻译
由于经过验证的2D检测技术的适用性,大多数当前点云检测器都广泛采用了鸟类视图(BEV)。但是,现有方法通过简单地沿高度尺寸折叠的体素或点特征来获得BEV特征,从而导致3D空间信息的重丢失。为了减轻信息丢失,我们提出了一个基于多级特征降低降低策略的新颖点云检测网络,称为MDRNET。在MDRNET中,空间感知的维度降低(SDR)旨在在体素至BEV特征转换过程中动态关注对象的宝贵部分。此外,提出了多级空间残差(MSR),以融合BEV特征图中的多级空间信息。关于Nuscenes的广泛实验表明,该提出的方法的表现优于最新方法。该代码将在出版时提供。
translated by 谷歌翻译
具有大量偏见的数据集当前威胁要培训有关NLU任务的值得信赖的模型。尽管取得了巨大进展,但当前的偏见方法却过分依赖偏见属性的知识。但是,属性的​​定义是难以捉摸的,并且在不同的数据集上有所不同。此外,利用输入级别的这些属性到偏置缓解可能会留下内在属性与基本决策规则之间的差距。为了缩小这一差距并解放有关偏见的监督,我们建议将缓解偏见扩展到特征空间。因此,开发了一个新型模型,即恢复具有无知识(风险)的预期功能子空间。假设由各种偏见引起的快捷键特征是为了预测而无意的,则风险将其视为冗余特征。当研究较低的歧管以去除冗余时,风险表明,具有预期功能的极低维度子空间可以牢固地表示高度偏见的数据集。经验结果表明,我们的模型可以始终如一地提高模型的概括到分布式集合,并实现新的最新性能。
translated by 谷歌翻译
准确可靠的传感器校准对于在自主驾驶中融合激光雷达和惯性测量至关重要。本文提出了一种新型的3D-LIDAR和姿势传感器的新型三阶段外部校准方法,用于自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便可以将外部参数从大的初始误差范围缩小到很小的时间范围。第二阶段可以基于激光映射空间占用率进一步校准外部参数,同时消除运动失真。在最后阶段,校正了由自动驾驶汽车的平面运动引起的Z轴误差,并最终获得了精确的外部参数。具体而言,该方法利用了道路场景的自然特征,使其独立且易于在大规模条件下应用。现实世界数据集的实验结果证明了我们方法的可靠性和准确性。这些代码是在GitHub网站上开源的。据我们所知,这是第一个专门为自动驾驶设计的开源代码,用于校准激光雷达和姿势传感器外部参数。代码链接是https://github.com/opencalib/lidar2ins。
translated by 谷歌翻译
Bert在文本分类任务中取得了显着的结果,但尚未完全利用它,因为仅将最后一层用作下游分类器的表示输出。关于伯特学到的语言特征性质的最新研究表明,不同的层集中在不同种类的语言特征上。我们提出了一个CNN增强的变压器编码器模型,该模型在固定的bert $ [cls] $顶部进行了训练,来自所有层的表示,采用卷积神经网络来生成变压器编码器内的QKV功能映射,而不是线性的输入投影,进入嵌入空间。 CNN-Trans-enc相对较小,因为下游分类器,并且不需要对Bert进行任何微调,因为它可以确保从所有层中的$ [CLS] $表示的最佳使用,从而利用具有更有意义,更有意义,更有意义,更有意义的语言功能和输入的可推广QKV表示。将BERT与CNN-Trans-enc一起使用$ 98.9 \%$和$ 94.8 \%\%$ $ $ $ $ -5,$ 82.23 $($ 8.9 \%$改善),在亚马逊极性上,$ 0.98 \%$($ 0.2 \%$改进)(来自两个数据集的100万个样本子集的K倍交叉验证)。在AG新闻数据集中,CNN-Trans-enc在当前最新的$ 99.94 \%$中,并在DBPEDIA-14上获得了新的最高绩效,平均准确性为99.51美元\%$。索引术语:文本分类,自然语言处理,卷积神经网络,变压器,伯特
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
在许多GNN结构中,采样是一个重要的过程,以训练具有较小计算复杂性的较大数据集。但是,与GNN中的其他过程相比(例如骨料,向后传播),抽样过程仍然花费巨大的时间,这限制了训练速度。为了减少抽样时间,硬件加速度是理想的选择。但是,最新的GNN加速度提案未指定如何加速采样过程。更重要的是,直接加速传统抽样算法将使加速器的结构变得非常复杂。在这项工作中,我们做出了两个贡献:(1)提出了一个新的邻居采样器:Concat Sampler,可以在硬件级别上轻松加速,同时保证测试准确性。(2)基于FPGA设计了一个Concat-Smpliper-Accelerator,与没有它的采样过程相比,邻居采样过程的提高速度约为300-1000倍。
translated by 谷歌翻译