通用域的适应性(UNIDA)旨在将公共类的知识从源域转移到目标域,而无需对标签集的任何先验知识,这需要将未知样本与目标域中的已知样本区分开。就像传统的无监督域适应问题一样,由于偏见和歧视性较低的嵌入,两个域之间的错位也存在。最新方法提出了通过将目标样品与最近的邻居或原型聚类来完成域未对准的方法。但是,这样做是很危险的,因为我们对未知样本的分布没有任何先验知识,这些样本可以放大错位,尤其是当未知集很大的时候。同时,其他现有基于分类器的方法可以轻松地产生对未知样本的过度自信预测,因为在源域中有监督的目标导致整个模型偏向于目标域中的共同类别。因此,我们提出了一种新型的非参数未知样品检测方法,基于将原始特征空间中的样品映射到可靠的线性子空间中,这使数据点更稀疏,以减少未知样品和源样本之间的不对准。此外,与最近应用额外参数以改善未知样品分类的方法不同,本文通过未知的自适应保证金损失可以很好地平衡已知样品和未知样品的置信值,从而可以控制分类器学习的梯度在有监督的来源上的梯度更新样品取决于当前步骤中检测到的未知样品的置信度。最后,在四个公共数据集上的实验表明,我们的方法显着胜过现有的最新方法。
translated by 谷歌翻译
言语的数字,例如隐喻和讽刺,在文学作品和口语对话中无处不在。这对自然语言理解构成了巨大的挑战,因为语音的数字通常偏离表面上表达更深层次的语义含义的含义。先前的研究强调了数字的文学方面,很少从计算语言学的观点提供全面的探索。在本文中,我们首先提出了象征性单元的概念,该单元是人物的载体。然后,我们选择了中文常用的12种类型的数字,并构建中文语料库以进行上下文化的图形识别(配置)。与以前的令牌级别或句子级别对应物不同,配置旨在从话语级别的上下文中提取象征性单元,并将象征性单元分类为正确的图类型。在配置时,设计了三个任务,即图形提取,图类型分类和图形识别,并使用最新技术来实现基准。我们进行彻底的实验,并表明所有三个任务对于现有模型都充满挑战,因此需要进一步研究。我们的数据集和代码可在https://github.com/pku-tangent/configure上公开获取。
translated by 谷歌翻译
基于激光传感器的同时定位和映射(SLAM)已被移动机器人和自动驾驶汽车广泛采用。这些大满贯系统需要用有限的计算资源来支持准确的本地化。特别是,点云注册,即,在全球坐标框架中在多个位置收集的多个LIDAR扫描匹配和对齐的过程被视为SLAM的瓶颈步骤。在本文中,我们提出了一种功能过滤算法Pfilter,可以过滤无效的功能,因此可以大大减轻这种瓶颈。同时,由于精心策划的特征点,总体注册精度也得到了提高。我们将PFILTER集成到公认的扫描到映射激光射击轨道框架F-LOAM,并评估其在KITTI数据集中的性能。实验结果表明,pfilter可以删除本地特征图中约48.4%的点,并将扫描中的特征点平均减少19.3%,从而节省每帧的处理时间20.9%。同时,我们将准确性提高了9.4%。
translated by 谷歌翻译
尽管在过去几年中取得了重大进展,但使用单眼图像进行深度估计仍然存在挑战。首先,训练度量深度预测模型的训练是不算气的,该预测模型可以很好地推广到主要由于训练数据有限的不同场景。因此,研究人员建立了大规模的相对深度数据集,这些数据集更容易收集。但是,由于使用相对深度数据训练引起的深度转移,现有的相对深度估计模型通常无法恢复准确的3D场景形状。我们在此处解决此问题,并尝试通过对大规模相对深度数据进行训练并估算深度转移来估计现场形状。为此,我们提出了一个两阶段的框架,该框架首先将深度预测到未知量表并从单眼图像转移,然后利用3D点云数据来预测深度​​移位和相机的焦距,使我们能够恢复恢复3D场景形状。由于两个模块是单独训练的,因此我们不需要严格配对的培训数据。此外,我们提出了图像级的归一化回归损失和基于正常的几何损失,以通过相对深度注释来改善训练。我们在九个看不见的数据集上测试我们的深度模型,并在零拍摄评估上实现最先进的性能。代码可用:https://git.io/depth
translated by 谷歌翻译
高阶相关性学习在数据表示学习中表现出了优越性,在近几十年来,超图已被广泛使用。基于超图的表示方法(例如HyperGraph神经网络)的性能很大程度上取决于HyperGraph结构的质量。如何在数据之间生成超图结构仍然是一项具有挑战性的任务。缺失和嘈杂的数据可能会导致超图结构中的“不良连接”,并破坏基于超图的表示过程。因此,揭示高阶结构,即观察到的数据背后的超图成为一项紧迫但重要的任务。为了解决这个问题,我们设计了深度图结构学习的一般范式,即DeepHGSL,以优化基于超图表的表示超图结构。具体地,受鲁棒性问题的信息瓶颈原则的启发,我们首先将其扩展到HyperGraph Case,该案例由HyperGraph Information Bottleneck(HIB)原理命名。然后,我们应用此原理来指导超图结构学习,其中引入HIB以构建损耗函数以最大程度地减少超图结构中的嘈杂信息。可以优化超图结构,并且可以认为该过程可以增强正确的连接并削弱训练阶段的错误连接。因此,所提出的方法即使在严重的嘈杂结构上提取更健壮的表示也有益。最后,我们在四个基准数据集上评估该模型以进行表示。与其他最新方法相比,对图形和超图结构数据的实验结果证明了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
我们设计了神经动力状态估计(Neuro-DSE),这是一种基于学习的动态状态估计(DSE)算法,用于未知子系统下网络微电网(NMS)。我们的贡献包括:1)具有部分未识别的动态模型的NMS DSE的数据驱动的神经-DSE算法,该算法将神经异常 - 差异方程式(ODE-NET)融合到Kalman滤波器中; 2)一种自动过滤,增强和校正框架,可以在有限和嘈杂的测量下实现数据驱动DSE的自我修复神经-DSE算法(Neuro-DSE+); 3)一种神经-Kalmannet-DSE算法,该算法将Kalmannet与Neuro-DSE进一步整合在一起,以缓解基于神经和物理的动态模型的模型不匹配; 4)增强的神经-DSE,用于NMS状态和未知参数的联合估计(例如,惯性)。广泛的案例研究表明,在不同的噪声水平,控制模式,电源,观察力和模型知识下,神经-DSE及其变体的疗效。
translated by 谷歌翻译
深度学习(DL)通过前段光学相干断层扫描(AS-OCT)图像在角度闭合分类方面取得了重大进展。这些AS-OCT图像通常是通过不同的成像设备/条件获得的,这会导致基础数据分布的巨大变化(称为“数据域”)。此外,由于实用的标签困难,某些域(例如设备)可能没有任何数据标签。结果,在一个特定域(例如,特定设备)上训练的深层模型很难适应,因此在其他域(例如其他设备)上的性能很差。为了解决此问题,我们提出了一个多目标域的适应范式,以将在一个标记的源域上训练的模型转移到多个未标记的目标域。具体而言,我们提出了一种新型的多尺度多目标域对抗网络(M2DAN),以进行角度闭合分类。 M2DAN进行多域对抗性学习,以提取域不变特征,并开发一个多尺度模块,用于捕获AS-OCT图像的本地和全局信息。基于这些域不变的特征在不同尺度上,在源域上训练的深模型即使在这些域中没有任何注释,也能够在多个目标域上对角度闭合进行分类。对现实世界AS-OCT数据集进行的广泛实验证明了该方法的有效性。
translated by 谷歌翻译
平衡机器人(Ballbot)是测试平衡控制器有效性的好平台。考虑到平衡控制,已经广泛使用了基于模型的反馈控制方法。但是,接触和碰撞很难建模,并且通常导致平衡控制失败,尤其是当球机器人倾斜的角度时。为了探索球机器人的最大初始倾斜角,平衡控制被解释为使用增强学习(RL)的恢复任务。 RL是难以建模的系统的强大技术,因为它允许代理通过与环境进行交互来学习策略。在本文中,通过将常规反馈控制器与RL方法相结合,提出了化合物控制器。我们通过训练代理成功执行涉及联系和碰撞的恢复任务来显示化合物控制器的有效性。仿真结果表明,与常规基于模型的控制器相比,使用化合物控制器可以在更大的初始倾斜角度下保持平衡。
translated by 谷歌翻译
对话场景是语音处理技术最重要,最具挑战性的场景之一,因为对话中的人们以随意的方式相互反应。在对话中检测每个人的语音活动对于下游任务,例如自然语言处理,机器翻译等。人们指的是“何时说话”作为说话者诊断(SD)的检测技术。传统上,诊断错误率(DER)长期以来一直用作SD系统的标准评估度量。但是,der没有给简短的对话短语提供足够的重视,这在语义层面上很重要。此外,在语音社区中,仍然无法使用精心准确的手动测试数据集,适合评估对话性SD技术。在本文中,我们设计和描述了对话式短语扬声器诊断(CSSD)任务,该任务包括培训和测试数据集,评估指标和基线。在数据集方面,尽管先前开源的180小时对话魔术Data-RAMC数据集,但我们还准备了一个20小时的对话演讲测试数据集,并精心验证了CSSD任务的时间戳注释。在度量方面,我们设计了新的对话der(CDER)评估度量,该评估度量计算出语音级别的SD准确性。在基线方面,我们采用了一种常用的方法:变异贝叶斯HMM X-vector系统,作为CSSD任务的基线。我们的评估指标可在https://github.com/speechclub/cder_metric上公开获得。
translated by 谷歌翻译
数据爆炸和模型尺寸的增加推动了大规模机器学习的显着进步,但也使模型训练时间耗时和模型存储变得困难。为了解决具有较高计算效率和设备限制的分布式模型培训设置中的上述问题,仍然存在两个主要困难。一方面,交换信息的沟通成本,例如,不同工人之间的随机梯度是分布式培训效率的关键瓶颈。另一方面,较少的参数模型容易用于存储和通信,但是损坏模型性能的风险。为了同时平衡通信成本,模型容量和模型性能,我们提出了量化的复合镜下降自适应亚基(QCMD Adagrad),并量化正规化双平均平均自适应亚级别(QRDA ADAGRAD)进行分布式培训。具体来说,我们探讨了梯度量化和稀疏模型的组合,以降低分布式培训中每次迭代的通信成本。构建了基于量化梯度的自适应学习率矩阵,以在沟通成本,准确性和模型稀疏性之间达到平衡。此外,从理论上讲,我们发现大量化误差会引起额外的噪声,从而影响模型的收敛性和稀疏性。因此,在QCMD Adagrad和QRDA Adagrad中采用了具有相对较小误差的阈值量化策略,以提高信噪比并保留模型的稀疏性。理论分析和经验结果都证明了所提出的算法的功效和效率。
translated by 谷歌翻译