未经监督的人重新识别(Reid)是一个具有挑战性的任务,没有数据注释,以指导歧视性学习。现有方法通过群集提取的嵌入式来尝试解决此问题以生成伪标签。然而,大多数方法忽略了摄像机样式方差引起的类内间隙,并且一些方法是相对复杂和间接的,尽管它们试图解决相机样式对特征分布的负面影响。为了解决这个问题,我们提出了一种相机感知的风格分离和对比学习方法(CA-Ureid),它直接将相机样式与设计的相机感知的注意模块直接分离在功能空间中。它可以将学习功能明确地将学习功能分为特定于相机和相机不可知的部件,从而降低了不同摄像机的影响。此外,为了进一步缩小相机的差距,我们设计了一个摄像机感知对比中心损失,以了解每个身份的更多歧视性嵌入。广泛的实验证明了我们对无监督者Reid任务的最先进方法的方法的优越性。
translated by 谷歌翻译
计算机生成的全息术(CGH)具有广泛的应用,如直视显示,虚拟和增强现实,以及光学显微镜。CGH通常利用显示计算机产生的相位掩模的空间光调制器,调制相干光的相位以产生定制图案。计算相位掩码的算法是CGH的核心,通常定制以满足不同的应用。用于光学显微镜的CGH通常需要3D可访问性(即,沿着$ Z $ -axis产生重叠模式)和微米级空间精度。这里,我们使用设计用于光学显微镜的无监督生成模型来提出CGH算法,以合成3D选择的照明。命名为稀疏深度CGH的算法,能够以比传统的CGH算法更高的对比度在大的3D容积中产生稀疏分布点。
translated by 谷歌翻译
基于学习的边缘检测有很强地监督的是用像素 - 明智的注释进行了强烈监督,这是手动获取的乏味。我们研究了自我训练边缘检测问题,利用了未开发的大型未标记图像数据集。我们设计具有多层正规化和自学的自我监督框架。特别地,我们强加了一个一致性正则化,该正则化强制执行来自多个层中的每一个的输出,以对输入图像及其扰动的对应物一致。我们采用L0平滑作为“扰动”,以鼓励在自我监督学习集群假设之后展示展示突出边界的边缘预测。同时,通过伪标签进行多层监督,网络训练,该伪标签与罐头边缘初始化,然后通过网络迭代地改进,因为培训进行了。正规化和自我教学共同实现了精确和召回的良好平衡,导致对监督方法的显着提升,在目标数据集中轻质细化。此外,我们的方法展示了强大的交叉数据集普遍性。例如,与现有的方法相比,在看不见的数据集上测试时,OCS的ODS提高了4.8%和5.8%。
translated by 谷歌翻译
在持续学习的SSLAD-TRACK 3B挑战中,我们提出了与变压器(COLT)继续学习的方法。与卷积神经网络相比,我们发现变压器遭受灾难性遗忘的损失。我们方法的主要原则是用旧知识蒸馏和头部扩展策略装备基于变压器的特征提取器来竞争灾难性的遗忘。在本报告中,我们首先介绍了对象检测的持续学习的整体框架。然后,我们分析了解决我们解决方案中灾难性遗址的关键要素对效果。我们的方法在SSLAD-TRACK 3B挑战测试集上实现70.78映射。
translated by 谷歌翻译
链路预测在知识图中起着重要作用,这是许多人工智能任务的重要资源,但它通常受不完整的限制。在本文中,我们提出了知识图表BERT for Link预测,名为LP-BERT,其中包含两个培训阶段:多任务预训练和知识图微调。预训练策略不仅使用掩码语言模型(MLM)来学习上下文语料库的知识,还引入掩模实体模型(MEM)和掩模关系模型(MRM),其可以通过预测语义来学习三元组的关系信息基于实体和关系元素。结构化三维关系信息可以转换为非结构化语义信息,可以将其与上下文语料库信息一起集成到培训模型中。在微调阶段,灵感来自对比学习,我们在样本批量中进行三样式的负面取样,这大大增加了负采样的比例,同时保持训练时间几乎不变。此外,我们提出了一种基于Triples的逆关系的数据增强方法,以进一步增加样本分集。我们在WN18RR和UMLS数据集上实现最先进的结果,特别是HITS @ 10指示器从WN18RR数据集上的先前最先进的结果提高了5 \%。
translated by 谷歌翻译
最近,在一步的Panoptic细分方法上越来越关注,旨在有效地旨在在完全卷积的管道内共同分割实例和材料。但是,大多数现有的工作直接向骨干功能提供给各种分段头,忽略语义和实例分割的需求不同:前者需要语义级别的判别功能,而后者需要跨实例可区分的功能。为了缓解这一点,我们建议首先预测用于增强骨干特征的不同位置之间的语义级和实例级相关性,然后分别将改进的鉴别特征馈送到相应的分割头中。具体地,我们将给定位置与所有位置之间的相关性组织为连续序列,并将其预测为整体。考虑到这种序列可以非常复杂,我们采用离散的傅里叶变换(DFT),一种可以近似由幅度和短语参数化的任意序列的工具。对于不同的任务,我们以完全卷积的方式从骨干网上生成这些参数,该参数通过相应的任务隐含地优化。结果,这些准确和一致的相关性有助于产生符合复杂的Panoptic细分任务的要求的合理辨别特征。为了验证我们的方法的有效性,我们对几个具有挑战性的Panoptic细分数据集进行实验,并以45.1美元\%PQ和ADE20K为32.6美元\%PQ实现最先进的绩效。
translated by 谷歌翻译
ELO评级系统被广泛采用来评估(国际象棋)游戏和体育运动者的技能。最近,它还集成到了评估计算机化AI代理的性能时的机器学习算法中。然而,精确估计ELO评级(对于顶级球员)通常需要许多轮竞争,这可能是昂贵的。在本文中,为了提高ELO评估的样本效率(对于顶级球员),我们提出了一种有效的在线匹配调度算法。具体而言,我们通过Dueling Birits框架识别并匹配顶级播放器并将强盗算法定制到ELO的梯度更新。我们表明它减少了每一步记忆和时间复杂度来恒定,与需要$ O(t)$时间的传统似然最大化方法相比。我们的算法对$ \ tilde {o}(\ sqrt {t})$,Sublinear在竞争回合的数量中有遗憾的保证,并且已经扩展到多维ELO评级,用于处理风情游戏。我们经验证明我们的方法在各种游戏任务上实现了卓越的收敛速度和时间效率。
translated by 谷歌翻译
膝关节骨关节炎(OA)是最常见的骨关节炎和伤残原因。软骨缺陷被认为是膝关节OA的主要表现,其通过磁共振成像(MRI)可见。因此,对膝关节软骨缺陷的早期检测和评估对于保护膝关节OA患者来说是重要的。通过这种方式,通过将卷积神经网络(CNNS)应用于膝关节MRI,已经在膝关节软骨缺陷评估中进行了许多尝试。然而,软骨的生理特性可能阻碍这种努力:软骨是薄的弯曲层,这意味着只有膝关节MRI中的一小部分体素可以有助于软骨缺陷评估;异构扫描方案进一步挑战CNN在临床实践中的可行性;基于CNN的膝关节软骨评估结果缺乏解释性。为了解决这些挑战,我们将软骨结构和外观模拟到膝关节MRI进入图表表示,该图表能够处理高度多样化的临床数据。然后,由软骨图表示指导,我们设计了一种具有自我关注机制的非欧几里德深度学习网络,提取本地和全局中的软骨功能,并通过可视化结果导出最终评估。我们的综合实验表明,该方法在膝关节软骨缺陷评估中产生了卓越的性能,以及其方便的可解释性3D可视化。
translated by 谷歌翻译
最近已结合了进化算法(EAS)和深度加强学习(DRL)以集成两个解决方案的优势以获得更好的政策学习。然而,在现有的混合方法中,EA用于直接培训策略网络,这将导致对政策绩效的样本效率和不可预测的影响。为了更好地整合这两种方法并避免引入EA引起的缺点,我们致力于设计更有效和合理的结合EA和DRL的方法。在本文中,我们提出了进化行动选择 - 双胞胎延迟深度确定性政策梯度(EAS-TD3),是EA和DRL的新组合。在EAS中,我们专注于优化策略网络选择的动作,并尝试通过进化算法来指导策略学习的高质量行动。我们对挑战的连续控制任务进行了几个实验。结果表明,EAS-TD3在其他最先进的方法中显示出优异的性能。
translated by 谷歌翻译
最近建议的MaskFormer \ Cite {MaskFormer}对语义分割的任务提供了刷新的透视图:它从流行的像素级分类范例转移到蒙版级分类方法。实质上,它生成对应于类别段的配对概率和掩码,并在推理的分割映射期间结合它们。因此,分割质量依赖于查询如何捕获类别的语义信息及其空间位置。在我们的研究中,我们发现单尺度特征顶部的每个掩模分类解码器不足以提取可靠的概率或掩模。对于挖掘功能金字塔的丰富语义信息,我们提出了一个基于变压器的金字塔融合变压器(PFT),用于多尺度特征顶部的每个掩模方法语义分段。为了有效地利用不同分辨率的图像特征而不会产生过多的计算开销,PFT使用多尺度变压器解码器,具有跨尺度间间的关注来交换互补信息。广泛的实验评估和消融展示了我们框架的功效。特别是,与屏蔽Former相比,我们通过Reset-101c实现了3.2 miou改进了Reset-101c。此外,在ADE20K验证集上,我们的Swin-B骨架的结果与单尺度和多尺寸推断的屏蔽骨架中的较大的Swin-L骨架相匹配,分别实现54.1 miou和55.3 miou。使用Swin-L骨干,我们在ADE20K验证集中实现了56.0 Miou单尺度结果和57.2多尺度结果,从而获得数据集的最先进的性能。
translated by 谷歌翻译