本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
否决单图是一项普遍但又具有挑战性的任务。复杂的降雪降解和各种降解量表需要强大的代表能力。为了使否定的网络看到各种降雪并建模本地细节和全球信息的上下文相互作用,我们提出了一种称为Snowformer的功能强大的建筑。首先,它在编码器中执行比例感知功能聚合,以捕获各种降解的丰富积雪信息。其次,为了解决大规模降级,它使用了解码器中的新颖上下文交互变压器块,该互动器块在全球上下文交互中从前范围内的局部细节和全局信息进行了上下文交互。并引入本地上下文互动可改善场景细节的恢复。第三,我们设计了一个异质的特征投影头,该功能投影头逐渐融合了编码器和解码器的特征,并将精制功能投影到干净的图像中。广泛的实验表明,所提出的雪诺形雪孔比其他SOTA方法取得了重大改进。与SOTA单图像HDCW-NET相比,它在CSD测试集上将PSNR度量提高了9.2dB。此外,与一般图像恢复体系结构NAFNET相比,PSNR的增加5.13db,这验证了我们的雪诺形雪地降雪任务的强大表示能力。该代码在\ url {https://github.com/ephemeral182/snowformer}中发布。
translated by 谷歌翻译
对具有无限宽度的神经网络的研究对于更好地理解实际应用中的神经网络很重要。在这项工作中,我们得出了深,无限宽度的Maxout网络和高斯过程(GP)的等效性,并用组成结构表征Maxout内核。此外,我们建立了深厚的Maxout网络内核与深神经网络内核之间的联系。我们还提供了有效的数值实现,可以适应任何麦克斯特等级。数值结果表明,与有限宽度的对应物和深神经网络内核相比,基于深层Maxout网络内核进行贝叶斯推论可能会导致竞争成果。这使我们启发了麦克斯的激活也可以纳入其他无限宽度神经网络结构,例如卷积神经网络(CNN)。
translated by 谷歌翻译
联合学习(FL)是一种使用跨设备分布的数据训练模型的技术。差异隐私(DP)为敏感数据提供了正式的隐私保证。我们的目标是在使用FL和DP保护隐私的同时,在计算受限设备上训练大型神经网络语言模型(NNLM)。但是,随着模型大小的增长,引入模型的DP噪声增加,这通常会阻止收敛。我们提出了部分嵌入更新(PEU),这是一种新颖的技术,可以通过降低有效载荷大小来降低噪声。此外,我们采用低级适应(LORA)和噪声对比估计(NCE)来减少计算受限设备上大型模型的记忆需求。这种技术的组合使得可以在保留准确性和隐私的同时训练大型唱机语言模型。
translated by 谷歌翻译
评估对象图像的模糊对于提高对象识别和检索的性能至关重要。主要挑战在于缺乏具有可靠标签和有效学习策略的丰富图像。当前的数据集标记为有限且混乱的质量水平。为了克服这一限制,我们建议将成对图像之间的等级关系标记,而不是它们的质量水平,因为人类更容易标记,并建立具有可靠标签的大规模逼真的面部图像模糊评估数据集。基于此数据集,我们提出了一种仅以成对等级标签作为监督的方法来获得模糊分数。此外,为了进一步提高绩效,我们提出了一种基于四倍体排名一致性的自制方法,以更有效地利用未标记的数据。受监督和自我监督的方法构成了最终的半监督学习框架,可以端对端训练。实验结果证明了我们方法的有效性。
translated by 谷歌翻译
在恶劣天气下降雪场景的图像恢复是一项艰巨的任务。雪图像具有复杂的降解,并在干净的图像上混乱,改变了干净的图像的分布。以前基于CNN的方法由于缺乏特定的全球建模能力,因此在恢复雪场景中完全恢复了雪场的挑战。在本文中,我们将视觉变压器应用于从单个图像中去除积雪的任务。具体而言,我们建议沿通道拆分的并行网络体系结构分别执行本地功能改进和全局信息建模。我们利用频道洗牌操作来结合其各自的优势以增强网络性能。其次,我们提出了MSP模块,该模块利用多规模的AVGPOOL来汇总不同大小的信息,并同时对多头自我注意力进行多尺度投影自我注意,以提高模型在不同规模下降下的表示能力。最后,我们设计了一个轻巧,简单的本地捕获模块,可以完善模型的本地捕获能力。在实验部分,我们进行了广泛的实验以证明我们方法的优越性。我们比较了三个雪场数据集上的先前清除方法。实验结果表明,我们的方法超过了更少的参数和计算的最新方法。在CSD测试数据集上,我们实现了1.99dB和SSIM 0.03的实质增长。在SRR和SNOW100K数据集上,与Transweather方法相比,我们还增加了2.47dB和1.62dB,在SSIM中提高了0.03。在视觉比较部分中,我们的MSP形式比现有方法获得了更好的视觉效果,证明了我们方法的可用性。
translated by 谷歌翻译
在冬季场景中,在雪下拍摄的图像的降解可能非常复杂,其中雪降解的空间分布因图像而异。最近的方法采用深层神经网络,直接从雪图像中恢复清洁的场景。但是,由于复杂的雪降解差异导致悖论,实时实现可靠的高清图像是一个巨大的挑战。我们开发了一种新型有效的金字塔网络,具有非对称编码器架构,用于实时高清图像。我们提出的网络的一般思想是通过功能中的多尺度特征流充分利用多尺度的特征流。与以前最先进的方法相比,我们的方法实现了更好的复杂性 - 性能取舍,并有效地处理了高清和超高清图像的处理困难。在三个大规模图像上进行的广泛实验表明,我们的方法超过了所有最新方法,既有数量又定性地超过了大幅度,从而将PSNR度量从31.76 dB提高到34.10 dB,升至34.10 dB。 SRRS测试数据集上的28.29 dB至30.87 dB。
translated by 谷歌翻译
神经体系结构搜索方法寻求具有有效的体重共享超级网训练的最佳候选者。但是,最近的研究表明,关于独立架构和共享重量网络之间的性能的排名一致性差。在本文中,我们提出了提前引导的一声NAS(PGONA),以加强超级网的排名相关性。具体而言,我们首先探讨激活功能的效果,并提出基于三明治规则的平衡采样策略,以减轻超级网中的重量耦合。然后,采用了拖鞋和禅宗得分来指导超级网的训练,并具有排名相关性损失。我们的PGONA在CVPR2022第二轻型NAS挑战赛的SuperNet轨道中排名第三。代码可在https://github.com/pprp/cvpr2022-nas?competition-track1-3th-solution中找到。
translated by 谷歌翻译
精神分裂症是一种慢性神经精神疾病,会引起大脑内部的不同结构改变。我们假设将深度学习应用于结构性神经影像学数据集可以检测到与疾病相关的改变,并提高分类和诊断准确性。我们使用单一可用的,常规的T1加权MRI扫描测试了这一假设,我们使用标准后处理方法从中提取了3D全脑结构。然后在三个开放数据集上开发,优化和评估了一个深度学习模型,并对精神分裂症患者进行T1加权MRI扫描。我们提出的模型优于基准模型,该模型还使用3D CNN体系结构对结构MR图像进行了训练。我们的模型几乎能够完美地(ROC曲线下的区域= 0.987),将精神分裂症患者与看不见的结构MRI扫描中的健康对照区分开。区域分析将皮质下区域和心室局部作为最预测的大脑区域。皮层结构在人类的认知,情感和社会功能中起关键作用,这些区域的结构异常与精神分裂症有关。我们的发现证实了精神分裂症与皮质下大脑结构的广泛改变有关,皮层结构信息在诊断分类中提供了突出的特征。总之,这些结果进一步证明了深度学习的潜力,以改善精神分裂症的诊断,并从单个标准的T1加权脑MRI中确定其结构性神经影像学特征。
translated by 谷歌翻译
分布式培训已成为培训大型神经网络(NN)模型的普遍性和有效的方法,该模型加工大规模数据。然而,满足来自各种NN模型,多样化计算资源的要求以及在培训工作期间的动态变化是非常挑战的。在这项研究中,我们在系统的端到端视图中设计了我们的分布式训练框架,以提供不同场景的内置自适应能力,特别是对于工业应用和生产环境,通过完全考虑资源分配,模型分区,任务放置和分布式执行。基于统一的分布式图和统一群集对象,我们的自适应框架配备了全球成本模型和全局计划者,可以实现任意并行,资源感知的放置,多模式执行,容错和弹性分布式。训练。实验表明,我们的框架可以满足应用程序的多样性和资源的异质性满足各种要求和具有竞争力的性能。具有260亿参数的Ernie语言模型在数千个AI处理器上有效地培训,可扩展性较弱的91.7%。通过采用异质管道异步执行,从推荐系统的模型的吞吐量可以分别增加到2.1倍,仅增加了GPU和CPU培训的3.3倍。此外,容错和弹性分布式培训已成功应用于在线工业应用,这减少了长期培训工作的数量,增加了34.49%,并在全球调度效率增加了33.91%生产环境。
translated by 谷歌翻译