我们在王等人开发的正规化探索制剂下,研究政策梯度(PG),以便在连续时间和空间中进行加强学习。 (2020)。我们代表值函数的梯度相对于给定的参数化随机策略,作为可以使用样本和当前值函数进行评估的辅助运行奖励函数的预期集成。这有效地将PG转化为策略评估(PE)问题,使我们能够应用贾和周最近开发的Martingale方法来解决我们的PG问题。基于此分析,我们为RL提出了两种类型的演员 - 批评算法,在那里我们同时和交替地学习和更新值函数和策略。第一类型直接基于上述表示,涉及未来的轨迹,因此是离线的。专为在线学习的第二种类型使用了政策梯度的一阶条件,并将其转化为Martingale正交状态。然后在更新策略时使用随机近似并入这些条件。最后,我们通过模拟在两个具体示例中展示了算法。
translated by 谷歌翻译
强大的机器学习是一个越来越重要的主题,专注于开发模型适应各种形式的不完美数据。由于在线技术中推荐制度的普遍性,研究人员进行了几项专注于数据稀疏性和轮廓注射攻击的鲁棒性研究。相反,我们为推荐系统提出了更全面的稳健性观点,包括多维尺寸 - 相对于子群体,转换,分布视差,攻击和数据稀疏性的鲁棒性。虽然有几个库允许用户比较不同的推荐系统模型,但没有软件库,可以在不同场景下对推荐系统模型进行全面的鲁棒性评估。作为我们的主要贡献,我们展示了一个强大的评估工具包,Recsys的强大健身房(Rgrecsys - https://www.github.com/salesforce/rgrecsys),它允许我们快速且统一地评估推荐系统模型的鲁棒性。
translated by 谷歌翻译
我们介绍了CVSS,这是一种大规模的多语言对语音转换(S2ST)语料库,从21种语言覆盖了21种语言的句子级并行S2ST对。通过将Covost 2从Covost 2的翻译文本综合将翻译文本与最先进的TTS系统合成语音,源自公共语音语音语料库和COVOST 2语音到文本转换(ST)语料库。提供了两个版本的翻译演讲:1)CVSS-C:所有翻译演讲都是一种高质量的规范声音; 2)CVSS-T:翻译语音从相应的源语音传输。此外,CVSS提供标准化的翻译文本,它与翻译语音中的发音匹配。在每个版本的CVSS上,我们建立了基线多语言直接S2ST模型和Cascade S2ST模型,验证了语料库的有效性。为了构建强大的Cascade S2ST基准,我们在Covost 2上培训了St模型,这优于前一种最先进的培训,而无需额外的数据。尽管如此,直接S2ST模型的性能在从头开始训练时接近强级联基线,并且在匹配ST模型中初始化时,仅在ASR转换转换时的0.1或0.7bleu差异。
translated by 谷歌翻译
将低分辨率(LR)图像恢复到超分辨率(SR)图像具有正确和清晰的细节是挑战。现有的深度学习工作几乎忽略了图像的固有结构信息,这是对SR结果的视觉感知的重要作用。在本文中,我们将分层特征开发网络设计为探测并以多尺度特征融合方式保持结构信息。首先,我们提出了在传统边缘探测器上的交叉卷积,以定位和代表边缘特征。然后,交叉卷积块(CCBS)设计有功能归一化和渠道注意,以考虑特征的固有相关性。最后,我们利用多尺度特征融合组(MFFG)来嵌入交叉卷积块,并在层次的层次上开发不同尺度的结构特征的关系,调用名为Cross-SRN的轻量级结构保护网络。实验结果表明,交叉SRN通过准确且清晰的结构细节实现了对最先进的方法的竞争或卓越的恢复性能。此外,我们设置了一个标准,以选择具有丰富的结构纹理的图像。所提出的跨SRN优于所选择的基准测试的最先进的方法,这表明我们的网络在保存边缘具有显着的优势。
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译
随着在过去十年的行业4.0技术的出现,机场经历了数字化,以利用这些技术的声称益处,如改善的运营效率和乘客经验。正在进行的Covid-19随着其变体的出现(例如三角洲,omicron)加剧了机场需要采用非接触式和机器人技术的新技术,以便在这种大流行期间提供旅行。然而,了解最近的挑战和成功因素,以便在机场采用数字技术。因此,通过对世界各地的机场运营商和管理人员的行业调查(n = 102,0.754,0.754 <Composite可靠性<0.892;在Covid-19期间进行),本研究确定了采用行业4.0技术(N = 20)所面临的挑战这加强了对机场支持技术采用的最佳实践或成功因素的理解。广泛使用的技术,组织环境(TOE)框架被用作调查问卷的定量部分的理论上。互补的定性部分用于支撑并延长调查结果。该行业调查是首要讨论,了解机场运营商在机场采用行业4.0技术方面的实施挑战。调查结果表明,尽管在机场采用各种行业4.0技术的通用挑战,但行业4.0技术在机场也没有在机场中实现相似的。
translated by 谷歌翻译
机场一直不断发展和采用数字技术,以提高运营效率,增强乘客经验,从现有基础设施产生辅助收入和提升能力。 Covid-19 Pandemase也挑战机场和航空利益相关者,以适应和管理新的业务挑战,例如促进非接触式旅游经验和确保业务连续性。使用行业4.0技术的数字化为机场提供机会,以解决与Covid-19大流行相关的短期挑战,同时也为未来的危机做准备未来的长期挑战。通过对102条有关文章的系统文献综述,我们讨论了当前在机场,相关挑战以及未来的研究方向上采用行业4.0技术的现状。本综述结果表明,行业4.0技术的实施正在慢慢获得机场环境的牵引力,并在发展未来机场的数字转型旅程中继续保持相关。
translated by 谷歌翻译
数字图像水印寻求保护数字媒体信息免受未经授权的访问,其中消息被嵌入到数字图像中并从中提取,甚至在各种数据处理下应用一些噪声或失真,包括有损图像压缩和交互式内容编辑。在用一些事先约束时,传统图像水印解决方案容易受到鲁棒性,而最近的基于深度学习的水印方法无法在特征编码器和解码器的各种单独管道下进行良好的信息丢失问题。在本文中,我们提出了一种新的数字图像水印解决方案,具有一个小巧的神经网络,名为可逆的水印网络(IWN)。我们的IWN架构基于单个可逆的神经网络(INN),这种双翼飞变传播框架使我们能够通过将它们作为彼此的一对逆问题同时解决信息嵌入和提取的挑战,并学习稳定的可逆性映射。为了增强我们的水印解决方案的稳健性,我们具体地引入了一个简单但有效的位消息归一化模块,以冷凝要嵌入的位消息,并且噪声层旨在模拟我们的iWN框架下的各种实际攻击。广泛的实验表明了我们在各种扭曲下的解决方案的优越性。
translated by 谷歌翻译
本文开发了一种停止线路辅助协同定位框架,用于连接的车辆,其创造性地利用了止动线的位置来实现通过车辆到车辆(V2V ) 沟通。首先,提出了用于第一停止车辆的自定位校正方案,其将停止线信息作为基准施加以校正GNSS / INS定位结果。然后,通过使用扩展的卡尔曼滤波器(EKF)与其他车辆的位置估计和车辆间距离测量的位置估计融合。以这种方式,第一站的益处延伸到整个VANET。这种合作惯性导航(CIN)框架可以大大提高VANET的定位性能。最后,北京的实验表明了拟议的停止线辅助合作框架的有效性。
translated by 谷歌翻译
大多数现代脸部完成方法采用AutoEncoder或其变体来恢复面部图像中缺失的区域。编码器通常用于学习强大的表现,在满足复杂的学习任务的挑战方面发挥着重要作用。具体地,各种掩模通常在野外的面部图像中呈现,形成复杂的图案,特别是在Covid-19的艰难时期。编码器很难在这种复杂的情况下捕捉如此强大的陈述。为了解决这一挑战,我们提出了一个自我监督的暹罗推论网络,以改善编码器的泛化和鲁棒性。它可以从全分辨率图像编码上下文语义并获得更多辨别性表示。为了处理面部图像的几何变型,将密集的对应字段集成到网络中。我们进一步提出了一种具有新型双重关注融合模块(DAF)的多尺度解码器,其可以以自适应方式将恢复和已知区域组合。这种多尺度架构有利于解码器利用从编码器学习到图像中的辨别性表示。广泛的实验清楚地表明,与最先进的方法相比,拟议的方法不仅可以实现更具吸引力的结果,而且还提高了蒙面的面部识别的性能。
translated by 谷歌翻译