在本文中,我们专注于3D形式抽象和语义分析的两个任务。这与目前的方法形成对比,仅关注3D形状抽象或语义分析。此外,以前的方法难以产生实例级语义结果,其限制了它们的应用。我们提出了一种用于联合估计3D形式抽象和语义分析的新方法。我们的方法首先为3D形状产生许多3D语义候选区域;然后,我们采用这些候选者直接预测语义类别,并使用深卷积神经网络同时细化候选地区的参数。最后,我们设计一种融合预测结果并获得最终语义抽象的算法,该抽象被显示为对标准非最大抑制的改进。实验结果表明,我们的方法可以产生最先进的结果。此外,我们还发现我们的结果可以很容易地应用于实例级语义部分割和形状匹配。
translated by 谷歌翻译
双重编码器结构成功地利用了两个特定语言的编码器(LSE)进行代码转换语音识别。由于LSE由两个预训练的语言特定模型(LSM)初始化,因此双编码器结构可以利用足够的单语言数据并捕获单个语言属性。但是,现有方法对LSE的语言没有限制,并且不足以针对LSM的语言知识。在本文中,我们提出了一种特定语言的特征辅助(LSCA)方法来减轻上述问题。具体来说,在培训期间,我们引入了两种特定语言的损失作为语言限制,并为其生成相应的语言目标。在解码过程中,我们通过组合两个LSM和混合模型的输出概率来考虑LSM的解码能力,以获得最终预测。实验表明,LSCA的训练或解码方法可以改善模型的性能。此外,通过组合LSCA的训练和解码方法,最佳结果可以在代码切换测试集上获得多达15.4%的相对误差。此外,该系统可以通过使用我们的方法来很好地处理代码转换语音识别任务,而无需额外的共享参数,甚至可以基于两个预训练的LSM进行重新训练。
translated by 谷歌翻译
移动对象(DATMO)的检测和跟踪是自动驾驶环境感知的重要组成部分。虽然使用环绕视图摄像机的3D检测器只是蓬勃发展,但越来越多的趋势是使用不同的基于变压器的方法从透视图的2D特征图中学习3D空间中的查询。本文提出了稀疏的R-CNN 3D(SRCN3D),这是一种新颖的两阶段全横向卷积映射管道,用于环绕视图摄像机检测和跟踪。 SRCN3D采用了级联结构,具有固定数量的提案盒和提案潜在功能的双轨更新。预计提案框可以透视视图,以汇总感兴趣的区域(ROI)本地特征。基于此,提案功能通过动态实例交互式头部进行完善,然后生成分类,并应用于原始边界框。与先前的艺术相比,我们的稀疏功能采样模块仅利用本地2D功能来调整每个相应的3D提案盒,从而导致完整的稀疏范式。提案功能和外观特征均在数据关联过程中采用多刺激性3D多对象跟踪方法。 Nuscenes数据集的广泛实验证明了我们提出的SRCN3D检测器和跟踪器的有效性。代码可在https://github.com/synsin0/srcn3d上找到。
translated by 谷歌翻译
通过大量多输入和多重输出实现的许多性能增长取决于发射机(基站)下链路通道状态信息(CSI)的准确性,这通常是通过在接收器(用户终端)估算并馈入的。到发射器。 CSI反馈的开销占据了大量的上行链路带宽资源,尤其是当传输天线数量较大时。基于深度学习(DL)的CSI反馈是指基于DL的自动编码器的CSI压缩和重建,并且可以大大减少反馈开销。在本文中,提供了有关该主题的最新研究的全面概述,首先是在CSI反馈中广泛使用的基本DL概念,然后对一些现有的基于DL的反馈作品进行分类和描述。重点是新型的神经网络体系结构和沟通专家知识的利用来提高CSI反馈准确性。还介绍了有关CSI反馈和CSI反馈与其他通信模块的联合设计的作品,并讨论了一些实际问题,包括培训数据集收集,在线培训,复杂性,概括和标准化效果。在本文的最后,确定了与未来无线通信系统中基于DL的CSI反馈相关的一些挑战和潜在的研究方向。
translated by 谷歌翻译
超声检查广泛用于甲状腺结节(良性/恶性)的临床诊断。但是,准确性在很大程度上取决于放射科医生的经验。尽管已经研究了甲状腺结节识别的深度学习技术。当前的解决方案主要基于静态超声图像,其时间信息有限,并且与临床诊断不一致。本文提出了一种通过详尽的超声视频和钥匙框架进行详尽的探索来自动识别甲状腺结节的新方法。我们首先提出一个检测 - 定位框架,以自动识别每个超声视频中典型结节的临床密钥框架。根据本地化的键框架,我们为甲状腺结节识别开发了一个钥匙框引导的视频分类模型。此外,我们引入了运动注意模块,以帮助网络关注超声视频中的重要帧,这与临床诊断一致。拟议的甲状腺结节识别框架已在临床收集的超声视频上进行了验证,与其他最先进的方法相比,表现出卓越的性能。
translated by 谷歌翻译
最近显示出一种仅通过神经元的尖峰实现的计算系统,即语法,即进行简单的英语句子的依赖性解析。我们解决了这项工作所留下的两个最重要的问题:选区(句子的关键部分,例如动词短语)和处理依赖句子的处理,尤其是中央句子。我们表明,语言的这两个方面也可以由神经元和突触以与已知或被广泛相信的语言器官的结构和功能兼容的方式来实现。令人惊讶的是,我们实施中心嵌入的方式指出了无上下文语言的新表征。
translated by 谷歌翻译
变压器已被广泛用于整个幻灯片图像(WSI)分类,以进行肿瘤分级,预后分析等。然而,在公共变压器中,在令牌上的自我注意和位置嵌入策略的设计限制了有效性和效率在Gigapixel组织病理学图像的应用中。在本文中,我们提出了一个用于组织病理学WSI分类的内核注意变压器(KAT)。代币的信息传输是通过令牌与与WSI上一组位置锚有关的一组内核之间的交叉注意来实现的。与共同的变压器结构相比,提出的KAT可以更好地描述WSI局部区域的层次上下文信息,同时保持较低的计算复杂性。在具有2040 WSI的胃数据集和具有2560 WSIS的子宫内膜数据集上评估了该方法,并与6种最先进的方法进行了比较。实验结果表明,所提出的KAT在组织病理学WSI分类的任务中有效有效,并且优于最新方法。该代码可在https://github.com/zhengyushan/kat上找到。
translated by 谷歌翻译
局部表示学习是促进组织病理学整体幻灯片图像分析的性能的关键挑战。先前的表示学习方法遵循监督学习范式。但是,大规模WSIS的手动注释是耗时且劳动力密集的。因此,自我监督的对比学习最近引起了密集的关注。目前的对比学习方法将每个样本视为一个类别,这遭受了类碰撞问题,尤其是在组织病理学图像分析的领域。在本文中,我们提出了一个新颖的对比表示学习框架,称为病变感染对比学习(LACL),用于组织病理学整个幻灯片图像分析。我们基于内存库结构建立了病变队列,以存储不同类别WSIS的表示形式,这使对比模型可以在训练过程中选择性定义负面对。此外,我们设计了一个队列改进策略,以净化病变队列中存储的表示形式。实验结果表明,LACL在不同数据集上学习在组织病理学图像表示学习中的最佳性能,并且在不同的WSI分类基准下的最先进方法优于最先进的方法。该代码可在https://github.com/junl21/lacl上获得。
translated by 谷歌翻译
Axie Infinity是一款复杂的纸牌游戏,具有巨大的动作空间。这使得很难使用通用增强学习(RL)算法解决这一挑战。我们提出了一个混合RL框架来学习行动表示和游戏策略。为了避免评估大型可行动作集中的每个动作,我们的方法评估使用动作表示确定的固定大小集中的动作。我们将方法的性能与其他两个基线方法的样本效率和受过训练模型的获胜率进行了比较。我们从经验上表明,我们的方法达到了三种方法中总体上最佳的获胜率和最佳样本效率。
translated by 谷歌翻译
这项研究提出了一种分布式算法,该算法通过自动决策,平滑的羊群和分布良好的捕获来使代理的自适应分组捕获多个目标。代理商根据环境信息做出自己的决定。提出了一种改进的人工潜在方法,以使代理能够平稳自然地改变形成以适应环境。拟议的策略确保了群体的协调发展在群体上陷入多个目标的现象。我们使用仿真实验和设计指标来验证提出方法的性能,以分析这些模拟和物理实验。
translated by 谷歌翻译