人工智能和神经科学都深受互动。人工神经网络(ANNS)是一种多功能的工具,用于研究腹侧视觉流中的神经表现,以及神经科学中的知识返回激发了ANN模型,以提高任务的性能。但是,如何将这两个方向合并到统一模型中较少研究。这里,我们提出了一种混合模型,称为深度自动编码器,具有神经响应(DAE-NR),其将来自视觉皮质的信息包含在ANN中,以实现生物和人造神经元之间的更好的图像重建和更高的神经表示相似性。具体地,对小鼠脑和DAE-NR的输入相同的视觉刺激(即自然图像)。 DAE-NR共同学会通过映射函数将编码器网络的特定层映射到腹侧视觉流中的生物神经响应,并通过解码器重建视觉输入。我们的实验表明,如果只有在联合学习,DAE-NRS可以(i)可以提高图像重建的性能,并且(ii)增加生物神经元和人工神经元之间的代表性相似性。 DAE-NR提供了一种关于计算机视觉和视觉神经科学集成的新视角。
translated by 谷歌翻译
机器学习在医学图像分析中发挥着越来越重要的作用,产卵在神经影像症的临床应用中的新进展。之前有一些关于机器学习和癫痫的综述,它们主要专注于电生理信号,如脑电图(EEG)和立体脑电图(SEENG),同时忽略癫痫研究中神经影像的潜力。 NeuroImaging在确认癫痫区域的范围内具有重要的优点,这对于手术后的前诊所评估和评估至关重要。然而,脑电图难以定位大脑中的准确癫痫病变区。在这篇综述中,我们强调了癫痫诊断和预后在癫痫诊断和预后的背景下神经影像学和机器学习的相互作用。我们首先概述癫痫诊所,MRI,DWI,FMRI和PET中使用的癫痫和典型的神经影像姿态。然后,我们在将机器学习方法应用于神经影像数据的方法:i)将手动特征工程和分类器的传统机器学习方法阐述了两种方法,即卷积神经网络和自动化器等深度学习方法。随后,详细地研究了对癫痫,定位和横向化任务等分割,本地化和横向化任务的应用,以及与诊断和预后直接相关的任务。最后,我们讨论了目前的成就,挑战和潜在的未来方向,希望为癫痫的计算机辅助诊断和预后铺平道路。
translated by 谷歌翻译
变形自身偏移(VAES)是具有来自深神经网络架构和贝叶斯方法的丰富代表功能的有影响力的生成模型。然而,VAE模型具有比分布(ID)输入的分配方式分配更高的可能性较高的可能性。为了解决这个问题,认为可靠的不确定性估计是对对OOC投入的深入了解至关重要。在这项研究中,我们提出了一种改进的噪声对比之前(INCP),以便能够集成到VAE的编码器中,称为INCPVAE。INCP是可扩展,可培训和与VAE兼容的,它还采用了来自INCP的优点进行不确定性估计。各种数据集的实验表明,与标准VAE相比,我们的模型在OOD数据的不确定性估计方面是优越的,并且在异常检测任务中是强大的。INCPVAE模型获得了可靠的输入不确定性估算,并解决了VAE模型中的ood问题。
translated by 谷歌翻译
无线电接入网络(RAN)技术继续见证巨大的增长,开放式运行越来越最近的势头。在O-RAN规范中,RAN智能控制器(RIC)用作自动化主机。本文介绍了对O-RAN堆栈相关的机器学习(ML)的原则,特别是加强学习(RL)。此外,我们审查无线网络的最先进的研究,并将其投入到RAN框架和O-RAN架构的层次结构上。我们在整个开发生命周期中提供ML / RL模型面临的挑战的分类:从系统规范到生产部署(数据采集,模型设计,测试和管理等)。为了解决挑战,我们将一组现有的MLOPS原理整合,当考虑RL代理时,具有独特的特性。本文讨论了系统的生命周期模型开发,测试和验证管道,称为:RLOPS。我们讨论了RLOP的所有基本部分,包括:模型规范,开发和蒸馏,生产环境服务,运营监控,安全/安全和数据工程平台。根据这些原则,我们提出了最佳实践,以实现自动化和可重复的模型开发过程。
translated by 谷歌翻译
最近,在一步的Panoptic细分方法上越来越关注,旨在有效地旨在在完全卷积的管道内共同分割实例和材料。但是,大多数现有的工作直接向骨干功能提供给各种分段头,忽略语义和实例分割的需求不同:前者需要语义级别的判别功能,而后者需要跨实例可区分的功能。为了缓解这一点,我们建议首先预测用于增强骨干特征的不同位置之间的语义级和实例级相关性,然后分别将改进的鉴别特征馈送到相应的分割头中。具体地,我们将给定位置与所有位置之间的相关性组织为连续序列,并将其预测为整体。考虑到这种序列可以非常复杂,我们采用离散的傅里叶变换(DFT),一种可以近似由幅度和短语参数化的任意序列的工具。对于不同的任务,我们以完全卷积的方式从骨干网上生成这些参数,该参数通过相应的任务隐含地优化。结果,这些准确和一致的相关性有助于产生符合复杂的Panoptic细分任务的要求的合理辨别特征。为了验证我们的方法的有效性,我们对几个具有挑战性的Panoptic细分数据集进行实验,并以45.1美元\%PQ和ADE20K为32.6美元\%PQ实现最先进的绩效。
translated by 谷歌翻译
弱监督学习可以帮助本地特征方法来克服以密集标记的对应关系获取大规模数据集的障碍。然而,由于弱监管无法区分检测和描述步骤造成的损失,因此直接在联合描述 - 然后检测管道内进行弱监督的学习,其性能受到限制。在本文中,我们提出了一种针对弱监督当地特征学习量身定制的解耦描述的管道。在我们的管道内,检测步骤与描述步骤分离并推迟直到学习判别和鲁棒描述符。此外,我们介绍了一条线到窗口搜索策略,以明确地使用相机姿势信息以获得更好的描述符学习。广泛的实验表明,我们的方法,即POSFEAT(相机姿势监督特征),以前完全和弱监督的方法优异,在各种下游任务上实现了最先进的性能。
translated by 谷歌翻译
本文解决了几秒钟学习问题,旨在从几个例子中学习新的视觉概念。在几次拍摄分类中的常见问题设置假设在获取数据标签中的随机采样策略,其在实际应用中效率低下。在这项工作中,我们介绍了一个新的预算感知几秒钟学习问题,不仅旨在学习新的对象类别,还需要选择信息实例来注释以实现数据效率。我们为我们的预算感知几秒钟学习任务开发了一个元学习策略,该任务共同了解基于图形卷积网络(GCN)和基于示例的少量拍摄分类器的新型数据选择策略。我们的选择策略通过图形消息传递计算每个未标记数据的上下文敏感表示,然后用于预测顺序选择的信息性分数。我们在迷你想象网,分层 - 想象项目和omniglot数据集上进行广泛的实验验证我们的方法。结果表明,我们的几次学习策略优于一个相当大的边缘,这表明了我们的方法的功效。
translated by 谷歌翻译
在过去十年中,深度神经网络在各种任务中取得了令人印象深刻的性能,例如自主驾驶,人脸识别和医学诊断。然而,事先作证表明,深度神经网络通过后门攻击将恶意小隐藏触发器注入模型培训,提高严重的安全威胁。要确定触发的神经元并防止反卧系攻击,我们利用福利价值并开发一种名为福利修剪(Shappruning)的新方法,该方法成功地从数据不足的情况下从模型中攻击(每级甚至没有数据) 。考虑到神经元之间的相互作用,Shappruning鉴定了少数感染的神经元(在所有神经元的1%以下),并在修剪诸如许多感染神经元后保护模型的结构和准确性。为了加速Shappruning,我们进一步提出了丢弃的阈值和$ \ epsilon $ -greedy策略以加速福利估计,使得只有几分钟的时间就可以修复中毒模型。实验证明了与现有方法相比,我们对各种攻击和任务的方法的有效性和鲁棒性。
translated by 谷歌翻译
随着面部伪造技术的快速发展,由于安全问题,伪造的检测引起了越来越多的关注。现有方法尝试使用频率信息在高质量的锻造面上进行微妙的伪影。然而,频率信息的开发是粗糙的,更重要的是,他们的香草学习过程努力提取细粒度的伪造痕迹。为了解决这个问题,我们提出了一个渐进式增强学习框架来利用RGB和细粒度的频率线索。具体而言,我们对RGB图像进行细粒度分解,以在频率空间中完全删除真实的迹线和虚假的迹线。随后,我们提出了一种基于双分支网络的渐进式增强学习框架,结合自增强和互增强模块。自增强模块基于空间噪声增强和渠道注意,捕获不同输入空间中的迹线。通过在共享空间维度中通信,互增强模块同时增强RGB和频率特征。逐步增强过程有助于学习具有细粒面的伪造线索的歧视特征。在多个数据集上进行广泛的实验表明我们的方法优于最先进的面部伪造检测方法。
translated by 谷歌翻译
自然语言句子的依赖树可以捕获语义和单词之间的交互。然而,目前尚不清楚这些方法是否能够组合利用语义解析的这种依赖信息的方法,以实现当它们组合时这些方法的进一步改进和关系。在本文中,我们研究了三种方法,将这种依赖信息纳入了基于变压器的语义解析器并经验研究其组合。我们首先在编码器中替换标准的自我关注头,具有父级的自我关注(Pascal)头部,即,可以参加每个令牌的依赖父级的那些。然后我们连接语法感知的单词表示(SAWR),即神经依赖性解析器的中间隐藏表示,普通单词嵌入以增强编码器。稍后,我们将组成注意(CA)模块插入编码器,这为能够更好地捕获输入句子的固有依赖结构的关注头增加了额外约束。转换集合学习(电话)用于模型聚集,并进行烧蚀研究以显示每种方法的贡献。我们的实验表明,CA与Pascal或Sawrs互补,Pascal + CA提供了ATIS,Geo和工作的神经方法中的最先进的性能。
translated by 谷歌翻译