深Q学习网络(DQN)是一种成功的方式,将增强学习与深神经网络结合在一起,并导致广泛应用强化学习。当将DQN或其他强化学习算法应用于现实世界问题时,一个具有挑战性的问题是数据收集。因此,如何提高数据效率是强化学习研究中最重要的问题之一。在本文中,我们提出了一个框架,该框架使用深q网络中的最大均值损失(m $^2 $ dqn)。我们没有在训练步骤中抽样一批体验,而是从体验重播中采样了几批,并更新参数,以使这些批次的最大td-Error最小化。所提出的方法可以通过替换损耗函数来与DQN算法的大多数现有技术结合使用。我们在几个健身游戏中使用了最广泛的技术DQN(DDQN)之一来验证该框架的有效性。结果表明,我们的方法会导致学习速度和性能的实质性提高。
translated by 谷歌翻译
区分计算机生成(CG)和自然摄影图像(PG)图像对于验证数字图像的真实性和独创性至关重要。但是,最近的尖端生成方法使CG图像中的合成质量很高,这使得这项具有挑战性的任务变得更加棘手。为了解决这个问题,提出了具有深层质地和高频特征的联合学习策略,以进行CG图像检测。我们首先制定并深入分析CG和PG图像的不同采集过程。基于这样的发现,即图像采集中的多个不同模块将导致对图像中基于卷积神经网络(CNN)渲染的不同敏感性不一致,我们提出了一个深层纹理渲染模块,以增强纹理差异和歧视性纹理表示。具体而言,生成语义分割图来指导仿射转换操作,该操作用于恢复输入图像不同区域中的纹理。然后,原始图像和原始图像和渲染图像的高频组件的组合被馈入配备了注意机制的多支球神经网络,该神经网络分别优化了中间特征,并分别促进了空间和通道维度的痕量探索。在两个公共数据集和一个具有更现实和多样化图像的新构建的数据集上进行的广泛实验表明,所提出的方法的表现优于现有方法,从而明确的余量。此外,结果还证明了拟议方法后处理操作和生成对抗网络(GAN)生成的图像的检测鲁棒性和泛化能力。
translated by 谷歌翻译
我们考虑使用人解剖模型来解释黑盒系统的时间行为的问题。为此,根据最近的研究趋势,我们依靠确定性有限自动机(DFAS)和线性时间逻辑(LTL)公式的基本但可解释的模型。与学习DFA和LTL公式的大多数现有作品相反,我们仅依靠积极的例子。我们的动机是,通常很难从黑盒系统中观察到负面例子。为了仅从积极的示例中学习有意义的模型,我们设计了依赖于模型作为正规化器的简洁性和语言最小性的算法。为此,我们的算法采用了两种方法:一种符号和反例引导。尽管符号方法利用语言最小值作为约束满意度问题的有效编码,但反例引入的人依靠生成合适的负面示例来修剪搜索。两种方法都为我们提供了有效的算法,并在学习模型上具有理论保证。为了评估我们的算法的有效性,我们在合成数据上评估了所有算法。
translated by 谷歌翻译
跟踪控制一直是机器人技术的重要研究主题。本文为基于生物启发的神经动力学模型提供了一种新型的混合控制策略(UUV)。首先开发了增强的反向运动控制策略,以避免急速速度跳跃,并提供相对于常规方法的光滑速度命令。然后,提出了一种新颖的滑动模式控制,该控制能够提供平滑而连续的扭矩命令,没有颤动。在比较研究中,提出的合并混合控制策略确保了控制信号的平滑度,这在现实世界中至关重要,尤其是对于需要在复杂的水下环境中运行的无人水下车辆。
translated by 谷歌翻译
线云虽然在先前的工作中受到评价不足,但与从多视图图像中提取的点云相比,可能对建筑物的结构信息进行了更紧凑的结构信息。在这项工作中,我们建议第一个处理用于构建线框抽象的线云的网络。该网络将线云作为输入,即从多视图图像提取的3D线段的非结构和无序集,并输出基础建筑物的3D线框,该建筑物由稀疏的3D连接组组成,由线段连接, 。我们观察到一个线斑块,即一组相邻的线段,编码足够的轮廓信息,以预测潜在连接的存在甚至3D位置,以及两个查询连接之间的连通性的可能性。因此,我们引入了两层线斑变压器,以从采样线贴片中提取连接和连接性,以形成3D构建线框模型。我们还介绍了带有地面3D线框的多视图图像的合成数据集。我们广泛证明,在多个基线建筑重建方法上,我们的重建3D线框模型可显着改善。
translated by 谷歌翻译
用皮肤镜图像进行深度学习的黑色素瘤分类最近显示出在自动早期黑色素瘤诊断中的巨大潜力。然而,受到明显的数据失衡和明显的外部伪影的限制,即头发和尺子标记,从皮肤镜图像中提取的判别特征提取非常具有挑战性。在这项研究中,我们试图分别解决这些问题,以更好地表示病变特征。具体而言,基于GAN的数据增强(GDA)策略可与拟议的隐式脱糖(IHD)策略一起生成合成黑色素瘤阳性图像。其中,与头发相关的表示通过辅助分类器网络隐式分散,并反向发送到黑色素瘤 - 特征提取主链,以提供更好的黑色素瘤特异性表示学习。此外,为了训练IHD模块,头发的噪音还标记在ISIC2020数据集上,这使其成为第一个带有类似头发伪影的注释的大型皮肤镜数据集。广泛的实验证明了所提出的框架的优势以及每个组件的有效性。改进的数据集可在https://github.com/kirtsy/dermoscopicdataset上公开可用。
translated by 谷歌翻译
当前对象检测器通常具有用于多级特征融合(MFF)的特征金字塔(FP)模块,该模块旨在减轻不同级别的特征之间的差距,并形成全面的对象表示以实现更好的检测性能。但是,它们通常需要较重的跨层次连接或迭代精炼才能获得更好的MFF结果,从而使它们在结构上变得复杂且计算效率低下。为了解决这些问题,我们提出了一种新颖有效的上下文建模机制,可以帮助现有的FPS提供更好的MFF结果,同时有效地降低计算成本。特别是,我们介绍了一种新颖的见解,即可以将综合背景分解并凝结成两种类型的表示,以提高效率。这两种表示包括本地集中的表示和全球汇总表示形式,前者着重于从附近地区提取上下文提示,而后者将整个图像场景的关键表示形式提取为全局上下文提示。通过收集凝结的环境,我们采用变压器解码器来研究它们与FP的每个局部特征之间的关系,然后相应地完善MFF结果。结果,我们获得了一个简单且轻巧的基于变压器的上下文冷凝(TCC)模块,该模块可以提高各种FPS并同时降低其计算成本。关于挑战性的可可数据集的广泛实验结果表明,TCC与四个代表性FPS兼容,并始终将其检测准确性提高到平均精度高达7.8%,并将其复杂性降低到GFLOPS上,以帮助高达20%。他们更有效地实现最先进的绩效。代码将发布。
translated by 谷歌翻译
高阶交互事件在现实世界应用中很常见。从这些事件中编码参与者的复杂关系的学习嵌入在知识挖掘和预测任务中至关重要。尽管现有方法取得了成功,例如泊松张量分解,它们忽略了数据基础的稀疏结构,即发生的相互作用远小于所有参与者之间可能的相互作用。在本文中,我们提出了稀疏高阶交互事件(NESH)的非参数嵌入。我们杂交稀疏的超图(张量)过程和一个基质高斯过程,以捕获相互作用中的渐近结构稀疏性和参与者之间的非线性时间关系。我们证明了稀疏性比的强渐近边界(包括较低和上限),这揭示了采样结构的渐近特性。我们使用批界规范化,破坏性结构和稀疏的变分GP近似来开发有效的,可扩展的模型推理算法。我们在几个现实世界应用中证明了方法的优势。
translated by 谷歌翻译
最近,已广泛研究了基于深度学习的方法,以进行可变形的图像注册任务。但是,大多数努力将复合图像表示形式直接映射到通过卷积神经网络的空间转换,而忽略了其捕获空间对应关系的有限能力。另一方面,变压器可以更好地表征与注意机制的空间关系,其远程依赖性可能对注册任务有害,在这种情况下,距离太大的体素不太可能是相应的对。在这项研究中,我们提出了一个新型的变形器模块,以及用于可变形图像配准任务的多尺度框架。变形器模块旨在通过将位移矢量预测作为几个碱基的加权总和来促进从图像表示到空间转换的映射。借助多尺度框架以粗略的方式预测位移字段,与传统和基于学习的方法相比,可以实现卓越的性能。进行了两个公共数据集的全面实验,以证明所提出的变形器模块以及多规模框架的有效性。
translated by 谷歌翻译
文本情绪分析(也称为意见挖掘)是对实体表达的人们观点,评估,态度和情感的计算的研究。文本情绪分析可以分为文本级别的情感分析,森林级别的情感分析和方面级别的情感分析。基于方面的情感分析(ABSA)是情感分析领域中的精细任务,该任务旨在预测各个方面的极性。训练前神经模型的研究显着改善了许多自然语言处理任务的性能。近年来,培训模型(PTM)已在ABSA中应用。因此,有一个问题,即PTM是否包含ABSA的足够的句法信息。在本文中,我们探讨了最近的Deberta模型(解码增强的BERT,并引起注意),以解决基于方面的情感分析问题。 Deberta是一种基于Transformer的神经语言模型,它使用自我监督的学习来预先培训大量原始文本语料库。基于局部环境重点(LCF)机制,通过整合Deberta模型,我们为基于方面的情感分析的多任务学习模型。该实验导致了Semeval-2014最常用的笔记本电脑和餐厅数据集,而ACL Twitter数据集则表明,具有Deberta的LCF机制具有显着改善。
translated by 谷歌翻译