本文为表格马尔可夫决策过程(MDP)提供了第一种多项式时间算法,该算法享受了遗憾的界限\ emph {独立于计划范围}。具体来说,我们考虑具有$ S $州的表格MDP,$ A $ ACTICY,计划范围$ h $,总奖励为$ 1 $,代理商播放$ K $ evipodes。我们设计了一种实现$ o \ left(\ mathrm {poly}(s,a,a,\ log k)\ sqrt {k} \ right)$遗憾的算法(\ mathrm {poly}(s,a,a,\ log k)polylog}(h)$依赖项〜\ citep {zhang2020 reininforcement}或对$ s $〜\ citep {li2021settling}具有指数依赖关系。我们的结果依赖于一系列新的结构引理,从而建立了固定策略的近似能力,稳定性和浓度特性,这些策略可以在与马尔可夫链有关的其他问题中应用。
translated by 谷歌翻译
与从头开始的传统学习相比,知识蒸馏有时会使DNN实现卓越的性能。本文提供了一种新的观点,可以根据信息理论来解释知识蒸馏的成功,即量化在DNN的中间层中编码的知识点。为此,我们将DNN中的信号处理视为丢弃层的信息。知识点称为输入单元,其信息比其他输入单元所丢弃的信息要少得多。因此,我们根据知识点的量化提出了三个用于知识蒸馏的假设。 1. DNN从知识蒸馏中学习比从头开始学习的DNN学习更多的知识点。 2.知识蒸馏使DNN更有可能同时学习不同的知识点。相比之下,从头开始的DNN学习倾向于顺序编码各种知识点。 3.与从头开始学习的DNN学习通常更稳定地优化了从知识蒸馏中学习的DNN学习。为了验证上述假设,我们设计了具有前景对象注释的三种类型的指标,以分析DNN的功能表示,\ textit {i.e。}知识点的数量和质量,不同知识点的学习速度,以及优化方向的稳定性。在实验中,我们诊断出各种DNN的不同分类任务,即图像分类,3D点云分类,二进制情感分类和问题回答,这些问题验证了上述假设。
translated by 谷歌翻译
常规的多视图聚类试图基于所有观点的假设,以完全观察到所有观点的假设。但是,在诸如疾病诊断,多媒体分析和建议系统之类的实际应用中,常见的是,在许多情况下,并非所有样品的观点都可以使用,这导致常规多视图聚类方法的失败。在此不完整的多视图数据上的聚类称为不完整的多视图聚类。鉴于有前途的应用前景,近年来对不完整的多视图聚类的研究取得了明显的进步。但是,没有调查可以总结当前的进展并指出未来的研究方向。为此,我们回顾了最新的关于多视图聚类的研究。重要的是,我们提供一些框架来统一相应的不完整的多视图聚类方法,并从理论和实验角度对某些代表性方法进行深入的比较分析。最后,为研究人员提供了不完整的多视图聚类领域中的一些开放问题。
translated by 谷歌翻译
与常规知识蒸馏(KD)不同,自我KD允许网络在没有额外网络的任何指导的情况下向自身学习知识。本文提议从图像混合物(Mixskd)执行自我KD,将这两种技术集成到统一的框架中。 Mixskd相互蒸馏以图形和概率分布在随机的原始图像和它们的混合图像之间以有意义的方式。因此,它通过对混合图像进行监督信号进行建模来指导网络学习跨图像知识。此外,我们通过汇总多阶段功能图来构建一个自学老师网络,以提供软标签以监督骨干分类器,从而进一步提高自我增强的功效。图像分类和转移学习到对象检测和语义分割的实验表明,混合物KD优于其他最先进的自我KD和数据增强方法。该代码可在https://github.com/winycg/self-kd-lib上找到。
translated by 谷歌翻译
当与分支和界限结合使用时,结合的传播方法是正式验证深神经网络(例如正确性,鲁棒性和安全性)的最有效方法之一。但是,现有作品无法处理在传统求解器中广泛接受的切割平面限制的一般形式,这对于通过凸出凸松弛的加强验证者至关重要。在本文中,我们概括了结合的传播程序,以允许添加任意切割平面的约束,包括涉及放宽整数变量的限制,这些变量未出现在现有的结合传播公式中。我们的广义结合传播方法GCP-crown为应用一般切割平面方法}开辟了一个机会进行神经网络验证,同时受益于结合传播方法的效率和GPU加速。作为案例研究,我们研究了由现成的混合整数编程(MIP)求解器生成的切割平面的使用。我们发现,MIP求解器可以生成高质量的切割平面,以使用我们的新配方来增强基于界限的验证者。由于以分支为重点的绑定传播程序和切削平面的MIP求解器可以使用不同类型的硬件(GPU和CPU)并行运行,因此它们的组合可以迅速探索大量具有强切割平面的分支,从而导致强大的分支验证性能。实验表明,与VNN-Comp 2021中最佳工具相比,我们的方法是第一个可以完全求解椭圆形的基准并验证椭圆21基准的两倍的验证者,并且在oval21基准测试中的最佳工具也明显超过了最先进的验证器。广泛的基准。 GCP-Crown是$ \ alpha $,$ \ beta $ -Crown验证者,VNN-COMP 2022获奖者的一部分。代码可在http://papercode.cc/gcp-crown上获得
translated by 谷歌翻译
数据爆炸和模型尺寸的增加推动了大规模机器学习的显着进步,但也使模型训练时间耗时和模型存储变得困难。为了解决具有较高计算效率和设备限制的分布式模型培训设置中的上述问题,仍然存在两个主要困难。一方面,交换信息的沟通成本,例如,不同工人之间的随机梯度是分布式培训效率的关键瓶颈。另一方面,较少的参数模型容易用于存储和通信,但是损坏模型性能的风险。为了同时平衡通信成本,模型容量和模型性能,我们提出了量化的复合镜下降自适应亚基(QCMD Adagrad),并量化正规化双平均平均自适应亚级别(QRDA ADAGRAD)进行分布式培训。具体来说,我们探讨了梯度量化和稀疏模型的组合,以降低分布式培训中每次迭代的通信成本。构建了基于量化梯度的自适应学习率矩阵,以在沟通成本,准确性和模型稀疏性之间达到平衡。此外,从理论上讲,我们发现大量化误差会引起额外的噪声,从而影响模型的收敛性和稀疏性。因此,在QCMD Adagrad和QRDA Adagrad中采用了具有相对较小误差的阈值量化策略,以提高信噪比并保留模型的稀疏性。理论分析和经验结果都证明了所提出的算法的功效和效率。
translated by 谷歌翻译
视觉关系检测旨在检测图像中对象之间的相互作用。但是,由于对象和相互作用的多样性,此任务遭受了组合爆炸的影响。由于与同一对象相关的相互作用是依赖的,因此我们探讨了相互作用的依赖性以减少搜索空间。我们通过交互图明确地对象和交互对象进行建模,然后提出一种消息式风格的算法来传播上下文信息。因此,我们称为建议的方法神经信息传递(NMP)。我们进一步整合了语言先验和空间线索,以排除不切实际的互动并捕获空间互动。两个基准数据集的实验结果证明了我们提出的方法的优越性。我们的代码可在https://github.com/phyllish/nmp上找到。
translated by 谷歌翻译
大型视觉基础模型在自然图像上的视觉任务上取得了重大进展,在这种情况下,视觉变压器是其良好可扩展性和表示能力的主要选择。但是,在现有模型仍处于小规模的情况下,遥感社区(RS)社区中大型模型的利用仍然不足,从而限制了性能。在本文中,我们使用约1亿个参数求助于普通视觉变压器,并首次尝试提出针对RS任务定制的大型视觉模型,并探索如此大型模型的性能。具体而言,要处理RS图像中各种取向的较大图像大小和对象,我们提出了一个新的旋转型尺寸的窗户注意力,以替代变形金刚中的原始关注,这可以大大降低计算成本和内存足迹,同时学习更好的对象通过从生成的不同窗口中提取丰富上下文来表示。关于检测任务的实验证明了我们模型的优越性,超过了所有最新模型,在DOTA-V1.0数据集上实现了81.16 \%地图。与现有的高级方法相比,我们在下游分类和细分任务上的模型结果也证明了竞争性能。进一步的实验显示了我们模型对计算复杂性和几乎没有学习的优势。代码和模型将在https://github.com/vitae-transformer/remote-sensing-rvsa上发布
translated by 谷歌翻译
标签感建议是通过标记行为预测用户个性化项目的任务。对于具有Last.FM或Movielens等标记功能的许多应用程序至关重要。最近,许多努力致力于通过图形卷积网络(GCN)改进引人注目的推荐系统(TRS),这已成为一般建议的新最新技术。但是,某些解决方案是直接从GCN继承而没有理由的,这很难缓解标签引入的稀疏性,模棱两可和冗余问题,从而增加了培训和退化建议性能的困难。在这项工作中,我们旨在简化GCN的设计,以使其更简洁。我们提出了一个新颖的标签推荐模型,名为Light Folksonomy图协作滤波(LFGCF),该模型仅包括必需的GCN组件。具体而言,LFGCF首先从用户分配标签和项目标记的用户记录中构造了人们图形。然后,我们利用汇总的简单设计来学习人们对人物学图的高级表示形式,并使用在多个层中学习的嵌入的加权总和进行信息更新。我们共享标签嵌入,以弥合用户和项目之间的信息差距。此外,提出了一个名为Transrt的正规化功能,以更好地描述用户的偏好和项目功能。对三个现实世界数据集的广泛超参数实验和消融研究表明,LFGCF使用的参数较少,并且显着优于大多数基线的Tag-Aware Top-N建议。
translated by 谷歌翻译
数据驱动的PDE的发现最近取得了巨大进展,许多规范的PDE已成功地发现了概念验证。但是,在没有事先参考的情况下,确定最合适的PDE在实际应用方面仍然具有挑战性。在这项工作中,提出了物理信息的信息标准(PIC),以合成发现的PDE的简约和精度。所提出的PIC可在不同的物理场景中七个规范的PDE上获得最新的鲁棒性,并稀疏的数据,这证实了其处理困难情况的能力。该图片还用于从实际的物理场景中从微观模拟数据中发现未开采的宏观管理方程。结果表明,发现的宏观PDE精确且简约,并满足基础的对称性,从而有助于对物理过程的理解和模拟。 PIC的命题可以在发现更广泛的物理场景中发现未透视的管理方程式中PDE发现的实际应用。
translated by 谷歌翻译