ELO评级系统被广泛采用来评估(国际象棋)游戏和体育运动者的技能。最近,它还集成到了评估计算机化AI代理的性能时的机器学习算法中。然而,精确估计ELO评级(对于顶级球员)通常需要许多轮竞争,这可能是昂贵的。在本文中,为了提高ELO评估的样本效率(对于顶级球员),我们提出了一种有效的在线匹配调度算法。具体而言,我们通过Dueling Birits框架识别并匹配顶级播放器并将强盗算法定制到ELO的梯度更新。我们表明它减少了每一步记忆和时间复杂度来恒定,与需要$ O(t)$时间的传统似然最大化方法相比。我们的算法对$ \ tilde {o}(\ sqrt {t})$,Sublinear在竞争回合的数量中有遗憾的保证,并且已经扩展到多维ELO评级,用于处理风情游戏。我们经验证明我们的方法在各种游戏任务上实现了卓越的收敛速度和时间效率。
translated by 谷歌翻译
为了使3D人的头像广泛可用,我们必须能够在任意姿势中产生各种具有不同身份和形状的多种3D虚拟人。由于衣服的身体形状,复杂的关节和由此产生的丰富,随机几何细节,这项任务是挑战的挑战。因此,目前代表3D人的方法不提供服装中的人的全部生成模型。在本文中,我们提出了一种新的方法,这些方法可以学习在具有相应的剥皮重量的各种衣服中产生详细的3D形状。具体而言,我们设计了一个多主题前进的剥皮模块,这些模块只有几个受试者的未预装扫描。为了捕获服装中高频细节的随机性,我们利用对抗的侵害制定,鼓励模型捕获潜在统计数据。我们提供了经验证据,这导致了皱纹的局部细节的现实生成。我们表明我们的模型能够产生佩戴各种和详细的衣服的自然人头像。此外,我们表明我们的方法可以用于拟合人类模型到原始扫描的任务,优于以前的最先进。
translated by 谷歌翻译
随着深度学习和智能车辆的兴起,智能助手已成为促进驾驶和提供额外功能的基本内部组件。汽车智能助理应该能够处理一般的和与汽车有关的命令,并执行相应的操作,减轻驾驶和提高安全性。但是,对于低资源语言存在数据稀缺问题,妨碍了研究和应用的发展。在本文中,我们介绍了一个新的DataSet,粤式视听语音识别(CI-AVSR),用于粤语中的车载命令识别,具有视频和音频数据。它由令人宣传的30个粤语发言者记录的200个车载命令的4,984个样本(8.3小时)组成。此外,我们使用常见的内部内部背景噪声增强我们的数据集来模拟真实环境,产生比收集的数据集大10倍。我们提供我们数据集的清洁和增强版本的详细统计信息。此外,我们实施了两个多模式基线以证明CI-AVSR的有效性。实验结果表明,利用视觉信号提高了模型的整体性能。虽然我们的最佳模型可以在清洁测试集上实现相当大的质量,但嘈杂数据的语音识别质量仍然是较差的,并且仍然是真正的车载语音识别系统的极其具有挑战性的任务。数据集和代码将在https://github.com/hltchkust/ci-avsr发布。
translated by 谷歌翻译
我们展示了一个新的开源和可扩展知识提取工具包,称为Deepke(基于深度学习的知识提取),支持标准完全监督,低资源少拍摄和文档级方案。 Deepke实现了各种信息提取任务,包括命名实体识别,关系提取和属性提取。使用统一的框架,DeePke允许开发人员和研究人员根据其要求,自定义数据集和模型以从非结构化文本中提取信息。具体而言,DeePke不仅为不同的任务和场景提供了各种功能模块和模型实现,而且还通过一致的框架组织所有组件以维持足够的模块化和可扩展性。此外,我们在\ URL {http://deepke.zjukg.cn/}中介绍一个在线平台,用于实时提取各种任务。 Deepke已经配备了Google Colab教程和初学者的综合文件。我们用演示视频发布\ url {https://github.com/zjunlp/deepke}源代码。
translated by 谷歌翻译
由于极大数量的参数和评估标准和再现性,机器学习长期以来被视为黑盒子,用于预测燃烧化学动力学和缺乏评估标准和再现性。目前的工作旨在了解关于深度神经网络(DNN)方法的两个基本问题:DNN需要的数据以及DNN方法的一般数据。采样和预处理确定DNN训练数据集,进一步影响DNN预测能力。目前的工作建议使用Box-Cox转换(BCT)来预处理燃烧数据。此外,这项工作比较了在没有预处理的情况下进行了不同的采样方法,包括蒙特卡罗方法,歧管采样,生成神经网络方法(Cycle-GaN)和新提出的多尺度采样。我们的研究结果表明,通过歧管数据训练的DNN可以以有限的配置捕获化学动力学,但不能对扰动牢固,这对于与流场联系的DNN是不可避免的。蒙特卡罗和循环甘套采样可以覆盖更宽的相位空间,但不能捕获小规模的中间物种,产生差的预测结果。基于没有特定火焰仿真数据的多尺度方法的三层DNN,允许在各种场景中预测化学动力学并在时间的演变期间保持稳定。该单个DNN易于用几个CFD代码实现并在各种燃烧器中验证,包括(1)。零维自动化,(2)。一维自由传播火焰,(3)。具有三重火焰结构的二维喷射火焰,和(4)。三维湍流升降火焰。结果证明了预先训练的DNN的令人满意的准确性和泛化能力。 DNN和示例代码的FORTRAN和PYTHON版本在补充中附加了再现性。
translated by 谷歌翻译
犯罪预测对于公共安全和资源优化至关重要,但由于两个方面而言,这是非常具有挑战性的:i)犯罪活动的刑事模式的动态,犯罪事件在空间和时间域之间不均匀分布; ii)延时依赖于不同类型的犯罪(例如,盗窃,抢劫,攻击,损害),其揭示了犯罪的细粒度语义。为了解决这些挑战,我们提出了空间时间顺序超图网络(ST-SHN),以集体编码复杂的犯罪空间模式以及潜在的类别明智犯罪语义关系。具体而言,在长期和全局上下文下处理空间 - 时间动态,我们设计了一个具有超图学习范例的集成的图形结构化消息传递架构。为了在动态环境中捕获类别方面的犯罪异构关系,我们介绍了多通道路由机制,以了解犯罪类型的时间不断发展的结构依赖性。我们对两个现实世界数据集进行了广泛的实验,表明我们所提出的ST-SHN框架可以显着提高与各种最先进的基线相比的预测性能。源代码可用于:https://github.com/akaxlh/st-hn。
translated by 谷歌翻译
低资源语言的自动语音识别(ASR)改善了语言少数群体的访问,以便人工智能(AI)提供的技术优势。在本文中,我们通过创建一个新的粤语数据集来解决香港广东语言的数据稀缺问题。我们的数据集多域粤语语料库(MDCC)由73.6小时的清洁阅读语音与成绩单配对,从香港的粤语有声读物收集。它结合了哲学,政治,教育,文化,生活方式和家庭领域,涵盖了广泛的主题。我们还查看所有现有的粤语数据集,并在两个最大的数据集(MDCC和公共语音ZH-HK)上执行实验。我们根据其语音类型,数据源,总大小和可用性分析现有数据集。使用Fairseq S2T变压器,最先进的ASR模型进行实验结果,显示了我们数据集的有效性。此外,我们通过在MDCC和常见的声音ZH-HK上应用多数据集学习来创建一个强大而强大的粤语ASR模型。
translated by 谷歌翻译
统计物理学的最新进展显示了机器学习在识别阶段过渡时的显着性能。在本文中,我们基于转移学习施加域对抗性神经网络(DANN),以研究非平衡和平衡相变模型,分别是渗透模型和定向渗透(DP)模型。通过DANN,只需要标记一小部分输入配置(2D图像),以便自动选择,以便捕获临界点。要了解DP模型,该方法通过确定临界点的迭代过程来改进,这是计算临界指数$ \ nu _ {\ perp} $的数据崩溃的先决条件。然后,我们将DANN应用于二维站点的遗传筛选,该配置过滤以仅包括可能包含与订单参数相关的信息的最大群集。两种模型的DANN学习都会产生可靠的结果,它与来自蒙特卡罗模拟的结果相当。我们的研究还表明,与监督学习相比,Dann可以以更低的成本实现相当高的准确性。
translated by 谷歌翻译
近年来,深入学习的蓬勃发展的开花目睹了文本认可的快速发展。但是,现有的文本识别方法主要用于英语文本,而忽略中文文本的关键作用。作为另一种广泛的语言,中文文本识别各种方式​​都有广泛的应用市场。根据我们的观察,我们将稀缺关注缺乏对缺乏合理的数据集建设标准,统一评估方法和现有基线的结果。为了填补这一差距,我们手动收集来自公开的竞争,项目和论文的中文文本数据集,然后将它们分为四类,包括场景,网络,文档和手写数据集。此外,我们在这些数据集中评估了一系列代表性的文本识别方法,具有统一的评估方法来提供实验结果。通过分析实验结果,我们令人惊讶地观察到识别英语文本的最先进的基线不能很好地表现出对中国情景的良好。由于中国文本的特征,我们认为仍然存在众多挑战,这与英文文本完全不同。代码和数据集在https://github.com/fudanvi/benchmarking-chinese-text-recognition中公开使用。
translated by 谷歌翻译
最近,基于图形神经网络(GNN)的文本分类模型引起了越来越多的关注。大多数这些模型采用类似的网络范例,即使用预训练节点嵌入初始化和两层图卷积。在这项工作中,我们提出了Textrgnn,一种改进的GNN结构,它引入了剩余连接以加深卷积网络深度。我们的结构可以获得更广泛的节点接收领域,有效地抑制节点特征的过平滑。此外,我们将概率语言模型集成到图形节点嵌入的初始化中,从而可以更好地提取非图形语义信息。实验结果表明,我们的模型是一般和高效的。无论是语料库级别还是文本级别,它都可以显着提高分类准确性,并在各种文本分类数据集中实现SOTA性能。
translated by 谷歌翻译