心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
长期以来,可以将可以应用于新数据库的文本到SQL解析器的重要性已得到认可,实现此目标的关键步骤是架构链接,即在生成SQL时正确地识别未见列或表的提及。在这项工作中,我们提出了一个新颖的框架,以通过基于PoinCar \'e距离指标的探测程序从大规模预训练的语言模型(PLM)中引起关系结构,并使用诱导的关系来增强基于图的解析器为了更好的模式链接。与常用的基于规则的架构链接方法相比,我们发现探测关系也可以稳健地捕获语义对应关系,即使提及和实体的表面形式不同。此外,我们的探测过程完全不受监督,不需要其他参数。广泛的实验表明,我们的框架在三个基准测试中设定了新的最新性能。我们从经验上验证我们的探测程序确实可以通过定性分析找到所需的关系结构。
translated by 谷歌翻译
盲人面部修复(BFR)旨在从低品质的图像中恢复高质量的面部图像,并通常求助于面部先验,以改善恢复性能。但是,当前的方法仍然遇到两个主要困难:1)如何在不进行大规模调整的情况下得出强大的网络体系结构; 2)如何从一个网络中的多个面部先验捕获互补信息以提高恢复性能。为此,我们提出了一个面部修复搜索网络(FRSNET),以适应我们指定的搜索空间内的合适特征提取体系结构,这可以直接有助于恢复质量。在FRSNET的基础上,我们通过多个学习方案进一步设计了多个面部先验搜索网络(MFPSNET)。 MFPSNET最佳地从不同的面部先验中提取信息,并将信息融合到图像特征中,以确保保留外部指导和内部特征。通过这种方式,MFPSNet充分利用了语义级别(解析图),几何级别(面部热图),参考级别(面部词典)和像素级(降级图像)信息,从而产生忠实且逼真的图像。定量和定性实验表明,MFPSNET在合成和现实世界数据集上对最先进的BFR方法表现出色。这些代码可公开可用:https://github.com/yyj1ang/mfpsnet。
translated by 谷歌翻译
超声检查广泛用于甲状腺结节(良性/恶性)的临床诊断。但是,准确性在很大程度上取决于放射科医生的经验。尽管已经研究了甲状腺结节识别的深度学习技术。当前的解决方案主要基于静态超声图像,其时间信息有限,并且与临床诊断不一致。本文提出了一种通过详尽的超声视频和钥匙框架进行详尽的探索来自动识别甲状腺结节的新方法。我们首先提出一个检测 - 定位框架,以自动识别每个超声视频中典型结节的临床密钥框架。根据本地化的键框架,我们为甲状腺结节识别开发了一个钥匙框引导的视频分类模型。此外,我们引入了运动注意模块,以帮助网络关注超声视频中的重要帧,这与临床诊断一致。拟议的甲状腺结节识别框架已在临床收集的超声视频上进行了验证,与其他最先进的方法相比,表现出卓越的性能。
translated by 谷歌翻译
事实证明,多模式文档预训练的模型在各种视觉上富裕的文档理解(VRDU)任务中非常有效。尽管现有的文档预先培训模型在VRDU的标准基准上取得了出色的性能,但它们建模和利用文档上的视觉和语言之间的互动的方式阻碍了他们无法获得更好的概括能力和更高的准确性。在这项工作中,我们主要从监督信号的角度研究了VRDU视觉联合表示学习的问题。具体而言,提出了一种称为BI-VLDOC的预训练范式,其中设计了双向视觉监督策略和视觉性混合注意机制,以完全探索并利用这两种方式之间的相互作用,以学习更强的交叉交叉方式 - 具有更丰富语义的模式文档表示。 Bi-Vldoc受益于学习丰富的跨模式文档表示形式,显着提高了三个广泛使用文档的最新性能,理解基准,包括形式的理解(从85.14%到93.44%),收据信息提取(从96.01%到97.84%)和文档分类(从96.08%到97.12%)。在文档视觉质量检查中,BI-VLDOC与以前的单个模型方法相比,实现了最先进的性能。
translated by 谷歌翻译
在数字组织病理学分析中,污渍变化通常会降低基于深度学习的方法的概括能力。两项单独的建议,即染色标准化(SN)和染色增强(SA),已聚焦以减少概括错误,在此,前者使用模板图像减轻了不同医疗中心的污渍转移,后者则丰富了后者的污渍样式,并通过污染中心的误差。模拟更多的污渍变化。但是,它们的应用是由选择模板图像和不现实样式的构建的界定。为了解决这些问题,我们将SN和SA与新颖的Randstainna方案统一,该方案在可行的范围内限制了可变污渍样式,以训练污渍不可知论的深度学习模型。 Randstainna适用于在颜色空间集合中染色归一化,即HED,HSV,实验室。此外,我们提出了一个随机的颜色空间选择方案,以提高性能。我们通过两个诊断任务,即具有各种网络骨架的诊断任务,即组织亚型分类和核分割。拟议的Randstainna可以始终如一地提高概括能力,使我们的模型可以应对具有不可预测的污渍样式的更传入的临床数据集,因此所提出的Randstainna的性能优势可以始终如一地提高概括能力。这些代码可从https://github.com/yiqings/randstainna获得。
translated by 谷歌翻译
这项研究提出了一种分布式算法,该算法通过自动决策,平滑的羊群和分布良好的捕获来使代理的自适应分组捕获多个目标。代理商根据环境信息做出自己的决定。提出了一种改进的人工潜在方法,以使代理能够平稳自然地改变形成以适应环境。拟议的策略确保了群体的协调发展在群体上陷入多个目标的现象。我们使用仿真实验和设计指标来验证提出方法的性能,以分析这些模拟和物理实验。
translated by 谷歌翻译
我们提出了Bokehme,这是一种混合散景渲染框架,将神经渲染器与经典的身体动机渲染器结合。鉴于单个图像和潜在的不完美差异图,Bokehme生成了具有可调节的模糊大小,焦平面和光圈形状的高分辨率照片现实玻璃效果。为此,我们分析了基于经典散射方法的误差,并得出了计算误差图的公式。基于此公式,我们通过基于散射的方法实现经典渲染器,并提出一个两阶段的神经渲染器,以从经典渲染器中修复错误的区域。神经渲染器采用动态多尺度方案来有效处理任意模糊大小,并经过训练以处理不完美的差异输入。实验表明,我们的方法与对合成图像数据和具有预测差异的真实图像数据的先前方法进行了比较。进一步进行用户研究以验证我们方法的优势。
translated by 谷歌翻译
学习的推荐系统可能会无意间泄露有关其培训数据的信息,从而导致侵犯隐私行为。我们调查了推荐系统通过成员推理面临的隐私威胁。在这种攻击中,对手旨在推断用户的数据是否用于训练目标推荐人。为了实现这一目标,以前的工作使用了阴影推荐人来为攻击模型得出训练数据,然后通过计算用户历史互动和推荐项目之间的差异向量来预测成员资格。最先进的方法面临两个具有挑战性的问题:(1)由于阴影和目标推荐人之间的差距,攻击模型的培训数据偏见,并且(2)推荐人中的隐藏状态没有观察到,导致估计不准确差矢量。为了解决上述局限性,我们提出了针对推荐系统(DL-MIA)框架的成员推理攻击的偏见学习,该框架具有四个主要组件:(1)差异向量生成器,(2)分发式编码器,(3)重量估算器和(4)攻击模型。为了减轻推荐人之间的差距,设计了基于变异的自动编码器(VAE)的分解编码器,以识别推荐人不变和特定功能。为了减少估计偏差,我们设计了一个权重估计器,为每个差异向量分配了真实级别的得分,以指示估计精度。我们对三个现实世界数据集的一般推荐人和顺序推荐人评估了DL-MIA。实验结果表明,DL-MIA有效地减轻了同时减轻培训和估计的偏见,并实现了最先进的攻击性能。
translated by 谷歌翻译
句子完成(SC)问题提出了一个或多个需要填写的空白,三到五个可能的单词或短语作为选项。SC问题被广泛用于学习英语作为第二语言(ESL)的学生。在本文中,我们提出了一个大规模的SC数据集,\ textsc {sc-ques},该数据由292,517 ESL SC的问题组成,来自现实世界中标准化英语考试。此外,我们通过在提出的\ textsc {sc-ques}数据集上训练大规模的预训练语言模型来自动解决SC问题的全面基准。我们对基线模型的性能,限制和权衡进行详细分析。数据和我们的代码可用于研究目的:\ url {https://github.com/ai4ed/sc-ques}。
translated by 谷歌翻译