姿势估计对于机器人感知,路径计划等很重要。机器人姿势可以在基质谎言组上建模,并且通常通过基于滤波器的方法进行估算。在本文中,我们在存在随机噪声的情况下建立了不变扩展Kalman滤波器(IEKF)的误差公式,并将其应用于视觉辅助惯性导航。我们通过OpenVINS平台上的数值模拟和实验评估我们的算法。在Euroc公共MAV数据集上执行的仿真和实验都表明,我们的算法优于某些基于最先进的滤波器方法,例如基于Quaternion的EKF,首先估计Jacobian EKF等。
translated by 谷歌翻译
神经量渲染能够在自由观看中的人类表演者的照片真实效果图,这是沉浸式VR/AR应用中的关键任务。但是,这种做法受到渲染过程中高计算成本的严重限制。为了解决这个问题,我们提出了紫外线量,这是一种新方法,可以实时呈现人类表演者的可编辑免费视频视频。它将高频(即非平滑)的外观与3D体积分开,并将其编码为2D神经纹理堆栈(NTS)。光滑的紫外线量允许更小且较浅的神经网络获得3D的密度和纹理坐标,同时在2D NT中捕获详细的外观。为了编辑性,参数化的人类模型与平滑纹理坐标之间的映射使我们可以更好地对新型姿势和形状进行更好的概括。此外,NTS的使用启用了有趣的应用程序,例如重新启动。关于CMU Panoptic,ZJU MOCAP和H36M数据集的广泛实验表明,我们的模型平均可以在30fps中呈现960 * 540张图像,并具有可比的照片现实主义与先进方法。该项目和补充材料可从https://github.com/fanegg/uv-volumes获得。
translated by 谷歌翻译
联合学习(FL)提供了一种高效的分散机器学习框架,其中培训数据仍然在网络中的远程客户端分发。虽然FL实现了使用物联网设备的隐私保留的移动边缘计算框架,但最近的研究表明,这种方法易于来自远程客户端的侧面中毒攻击。要解决FL的中毒攻击,我们提供了一个\ Textit {两阶段}防御算法,称为{lo} cal {ma}恶意的事实{r}(lomar)。在I阶段I中,通过使用内核密度估计方法测量其邻居的相对分布,LOMAR从每个远程客户端进行模型更新。在II阶段,最佳阈值近似以从统计角度来区分恶意和清洁更新。已经进行了四个现实数据集的综合实验,实验结果表明,我们的防御策略可以有效保护FL系统。 {具体来说,标签翻转攻击下的亚马逊数据集上的防御性能表明,与FG + Krum相比,LOMAR从96.0 \%$ 98.8 \%$ 96.0 \%$ 98.8 \%$增加目标标签测试精度,以及90.1美元的总平均测试准确性\%$至97.0 \%$。
translated by 谷歌翻译
由于缺乏注释的病理图像,转移学习是数字病理领域的主要方法。基于Imagenet数据库的Pre培训的神经网络通常用于提取“从架子”特征中,以预测组织类型实现巨大成功,分子特征和临床结果等。我们假设使用组织病理学图像进行微调的模型可以进一步改善特征提取,下游预测性能。我们使用了100,000个注释的他的结肠直肠癌(CRC)的图像斑块到FINetune通过TwoStep方法预先训练的Xcepion模型。通过:(1)来自CRC的图像的图像分类,从CRC的图像进行了比较了从FineTuned Xception(FTX2048)模型和图像预测(IMGNET2048)模型的特征; (2)预测免疫基因表达和(3)肺腺癌(Luad)基因突变.FiveFold交叉验证用于模型性能评估。来自FFTuned FTX2048的提取特征在于与基于Imagenet数据库的Xcepion直接从架子特征预测CRC的螺栓类型的螺栓类型的精度显着更高。特别是,FTX2048显着提高了87%至94%的基质的精度。类似地,来自FTX2048的特征促进了免疫烯丙基蛋白拉德转录组表达的预测。对于具有与图像诱导的脑状有关系的基因,特征FGROM FERUNED模型的预测是对大多数基因的预测。从FTX2048中携带灌注,改善了拉德中9个最常见的突变基因中的5个突变的预测。
translated by 谷歌翻译
日志异常检测是IT操作(AIOPs)的人工智能领域的关键组成部分。考虑到变量域的日志数据,Retring为未知域的整个网络效率低于实际工业场景,特别是对于低资源域。但是,之前的深层模型仅仅集中在同一域中提取日志序列的语义,导致多域日志的概括。因此,我们提出了一种统一的基于变换器的日志异常检测框架(\ OurMethod {}),其包括预先曝光和基于适配器的调谐阶段。我们的模型首先在源域上留下来验证以获取日志数据的共享语义知识。然后,我们通过基于适配器的调谐将预磨模的模型传送到目标域。所提出的方法在包括一个源域和两个目标域的三个公共数据集上进行评估。实验结果表明,我们的简单且有效的方法,具有较少的可训练参数和较低的目标领域的培训成本,在三个基准上实现了最先进的性能。
translated by 谷歌翻译
神经辐射场(NERF)最近获得了令人印象深刻的新型观点综合能力的普及。本文研究了幻觉的nerf问题:即,在一组旅游形象的一天的不同时间恢复现实的nerf。现有解决方案采用NERF具有可控外观嵌入,以在各种条件下呈现新颖的视图,但不能以看不见的外观呈现视图 - 一致的图像。为了解决这个问题,我们提出了一种用于构建幻觉的nerf的端到端框架,称为H-nerf。具体地,我们提出了一种外观幻觉模块,以处理时变的外观,并将其转移到新颖的视图中。考虑到旅游图像的复杂遮挡,引入防遮挡模块以准确地分解静态受体的静态对象。合成数据和真实旅游照片集合的实验结果表明,我们的方法不仅可以幻觉所需的外观,还可以从不同视图中呈现无遮挡图像。项目和补充材料可在https://rover-xingyu.github.io/h-nerf/上获得。
translated by 谷歌翻译
尽管取得了巨大的成功,但深入的学习严重遭受鲁棒性;也就是说,深度神经网络非常容易受到对抗的攻击,即使是最简单的攻击。灵感来自脑科学最近的进步,我们提出了一种新的内部模型(DIM),这是一种基于新的生成自动化器的模型来解决这一挑战。模拟人类大脑中的管道进行视觉信号处理,暗淡采用两级方法。在第一阶段,DIM使用丹组器来减少输入的噪声和尺寸,反映了塔马拉姆的信息预处理。从主视觉皮质中的内存相关迹线的稀疏编码启发,第二阶段产生一组内部模型,一个用于每个类别。我们评估了42次对抗攻击的衰弱,表明Dim有效地防御所有攻击,并且优于整体鲁棒性的SOTA。
translated by 谷歌翻译
鉴定抗微生物肽的靶标是研究先天免疫反应和打击抗生素抗性的基本步骤,更广泛,精确的药物和公共卫生。关于鉴定(I)肽是抗微生物肽(AMP)的统计和计算方法是否有广泛的研究,或者是哪种靶向这些序列(克阳性,革兰氏阴性)的靶序列, 等等。)。尽管存在对此问题的深度学习方法,但大多数都无法处理小型AMP类(抗昆虫,抗寄生虫等)。更重要的是,一些AMP可以有多个目标,前面的方法无法考虑。在这项研究中,我们通过从各种AMP数据库收集和清洁氨基酸来构建多样化和综合的多标签蛋白序列数据库。为了为小类数据集产生有效的表示和特征,我们利用培训的蛋白质语言模型,培训了超过2.5亿蛋白序列。基于此,我们开发了一个端到端的分层多标签深森林框架,HMD-AMP,全面注释放大器。在识别AMP之后,它进一步预测了AMP可以从11个可用类中有效杀死的目标。广泛的实验表明,我们的框架在二进制分类任务和多标签分类任务中占据了最先进的模型,尤其是在次要类上。模型对抗特征和小扰动并产生有前途的结果。我们认为HMD-AMP对不同抗微生物肽的未来湿式实验室调查有助于不同抗菌肽的先天结构性质,并为抗生素进行精确药物构建有前途的实证内衬。
translated by 谷歌翻译
最早的早期结肠直肠癌(CRC)患者可以单独通过手术治愈,只有某些高风险的早期CRC患者受益于佐剂化学疗法。然而,很少有验证的生物标志物可用于准确预测术后化疗的生存效果。我们开发了一种新的深度学习算法(CRCNET),使用来自分子和细胞肿瘤(MCO)的全滑动图像来预测II / III CRC中辅助化疗的存活效益。我们通过交叉验证和外部使用来自癌症基因组Atlas(TCGA)的独立队列的外部验证了CRCNet。我们表明,CRCNet不仅可以准确地预测生存预后,还可以进行佐剂化疗的治疗效果。 CRCNET鉴定了来自佐剂化疗的高危亚组益处,在化疗治疗的患者中,观察到辅助化疗最大而显着的存活率。相反,在CRCNET低和中风险亚组中观察到最小化疗益处。因此,CRCNET可能在阶段II / III CRC的指导治疗方面具有很大的用途。
translated by 谷歌翻译
鉴于单个椅子图像,我们可以提取其3D形状并为其合理的关节和动作提供动画吗?这是一个有趣的新问题,可能有许多下游增强现实和虚拟现实应用。在本文中,我们提出了一种自动化方法来解决从单个图像,索引和动画中重建这种三维通用对象的整个过程。与以往的对象操纵的努力相比,我们的工作超出了2D操纵。此外,我们赋予了诸如椅子的其他刚体物体的合理的人类或类似动物的变形;这导致可行的物体运动方面的灵活性更大。凭经验我们的方法在公共数据集以及我们的内部数据集中令人满意地表明了令人满意的表现;与3D重建和骨架预测的相关任务相比,我们的结果通过明显的余量超越了最先进的。我们的实施和数据集将在纸张接受后公开提供。
translated by 谷歌翻译