由于缺乏注释的病理图像,转移学习是数字病理领域的主要方法。基于Imagenet数据库的Pre培训的神经网络通常用于提取“从架子”特征中,以预测组织类型实现巨大成功,分子特征和临床结果等。我们假设使用组织病理学图像进行微调的模型可以进一步改善特征提取,下游预测性能。我们使用了100,000个注释的他的结肠直肠癌(CRC)的图像斑块到FINetune通过TwoStep方法预先训练的Xcepion模型。通过:(1)来自CRC的图像的图像分类,从CRC的图像进行了比较了从FineTuned Xception(FTX2048)模型和图像预测(IMGNET2048)模型的特征; (2)预测免疫基因表达和(3)肺腺癌(Luad)基因突变.FiveFold交叉验证用于模型性能评估。来自FFTuned FTX2048的提取特征在于与基于Imagenet数据库的Xcepion直接从架子特征预测CRC的螺栓类型的螺栓类型的精度显着更高。特别是,FTX2048显着提高了87%至94%的基质的精度。类似地,来自FTX2048的特征促进了免疫烯丙基蛋白拉德转录组表达的预测。对于具有与图像诱导的脑状有关系的基因,特征FGROM FERUNED模型的预测是对大多数基因的预测。从FTX2048中携带灌注,改善了拉德中9个最常见的突变基因中的5个突变的预测。
translated by 谷歌翻译