选择第一次到达的Prestack收集时间被称为首次到达时间(FAT)采摘,这是地震数据处理中必不可少的一步,并且主要是手动解决的。随着当前地震数据收集密度的增加,手动采摘效率无法满足实际需求。因此,近几十年来,自动采摘方法已经大大开发出来,尤其是基于深度学习的方法。但是,当前有监督的基于深度学习的方法很少可以避免对标记样品的依赖。此外,由于收集数据是一组与自然图像大不相同的信号,因此当前方法在低信号与噪声比(SNR)的情况下很难解决脂肪拾取问题。在本文中,对于Hard Rock地震收集数据,我们提出了一个多阶段分割拾取网络(MSSPN),该网络解决了跨工作地点的概括问题以及在低SNR的情况下的采摘问题。在MSSPN中,有四个子模型可以模拟手动采摘处理,从而将其假定为从粗糙到细的四个阶段。具有不同质量的七个现场数据集的实验表明,我们的MSSPN的表现优于大幅度的基准。尤其是,在中等和高snrs的情况下,我们的方法可以实现超过90 \%的精确拾取,甚至精细模型也可以使用低SNR实现88 \%精确的数据集。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译
为了使视频模型能够在不同环境中无缝应用,已经提出了各种视频无监督的域适应性(VUDA)方法来提高视频模型的鲁棒性和可传递性。尽管模型鲁棒性有所改进,但这些VUDA方法仍需要访问源数据和源模型参数以进行适应,从而提高了严重的数据隐私和模型可移植性问题。为了应对上述问题,本文首先将Black-Box视频域的适应(BVDA)制定为更现实但具有挑战性的场景,在该场景中,仅作为Black-Box预测器提供了源视频模型。尽管在图像域中提出了一些针对黑框域适应性(BDA)的方法,但这些方法不能适用于视频域,因为视频模式具有更复杂的时间特征,难以对齐。为了解决BVDA,我们通过应用蒙版到混合策略和视频量的正则化:内部正规化和外部正规化,提出了一个新颖的内野和外部正规化网络(EXTERS),在剪辑和时间特征上执行,并进行外部正规化,同时将知识从从黑框预测变量获得的预测中提炼出来。经验结果表明,在各种跨域封闭设置和部分集合动作识别基准中,外部的最先进性能甚至超过了具有源数据可访问性的大多数现有视频域适应方法。
translated by 谷歌翻译
我们提出和分析产品细分新闻供应商问题,该问题概括了一系列可腐烂项目的细分销售现象。产品细分新闻册问题是新闻企业问题的新变体,反映出卖方通过在不确定的子项目需求的背景下确定整个项目的库存来最大化利润。我们通过假设随机需求的平均值和协方差矩阵来得出封闭形式的稳健订购决定,但不能提供分布。但是,在最糟糕的需求情况下总是在解决方案保守主义方面始终保持权衡的强大方法。因此,传统的健壮方案提供了不令人满意的。在本文中,我们整合了强大而深厚的增强学习(DRL)技术,并提出了一种新的范式,称为强大的学习,以提高强大的政策的吸引力。值得注意的是,我们将强大的决定作为人类领域的知识做出,并通过设计完整的人机协作经验,规范决策和正则化回报,将其实施到DRL的培训过程中。仿真结果证实,我们的方法有效地提高了稳健的性能,并可以推广到需要强大但不保守的解决方案的各种问题。同时,较少的培训情节,提高训练稳定性以及行为的解释性可能有机会促进运营实践中DRL算法的部署。此外,RLDQN解决1000维需求方案的成功尝试表明,该算法为通过人机协作解决了复杂的操作问题提供了一条途径,并可能具有解决其他复杂的运营管理问题的潜在意义。
translated by 谷歌翻译
关于现实生活知识图(KGS)的多跳上推理是一个高度挑战的问题,因为传统的子图匹配方法无法处理噪音和缺失信息。为了解决这个问题,最近已经引入了一种有希望的方法,该方法基于将逻辑查询和kgs共同嵌入到一个低维空间中以识别答案实体。但是,现有的提案忽略了KGS中固有可用的关键语义知识,例如类型信息。为了利用类型信息,我们提出了一种新颖的类型感知消息传递(TEMP)模型,该模型可以增强查询中的实体和关系表示形式,并同时改善概括,演绎和归纳推理。值得注意的是,Temp是一种插件模型,可以轻松地将其纳入现有的基于嵌入的模型中以提高其性能。在三个现实世界数据集上进行了广泛的实验证明了温度的有效性。
translated by 谷歌翻译
无监督域适应(UDA)已成功解决了可视应用程序的域移位问题。然而,由于以下原因,这些方法可能对时间序列数据的性能有限。首先,它们主要依赖于用于源预制的大规模数据集(即,ImageNet),这不适用于时间序列数据。其次,它们在域对齐步骤期间忽略源极限和目标域的特征空间上的时间维度。最后,最先前的UDA方法中的大多数只能对齐全局特征而不考虑目标域的细粒度分布。为了解决这些限制,我们提出了一个自我监督的自回归域适应(Slarda)框架。特别是,我们首先设计一个自我监督的学习模块,它利用预测作为辅助任务以提高源特征的可转换性。其次,我们提出了一种新的自回归域自适应技术,其包括在域对齐期间源和目标特征的时间依赖性。最后,我们开发了一个集合教师模型,通过自信的伪标记方法对准目标域中的类明智分发。已经在三个现实世界时间序列应用中进行了广泛的实验,具有30个跨域方案。结果表明,我们所提出的杆状方法明显优于时序序列域适应的最先进的方法。
translated by 谷歌翻译
神经网络(NNS)的能力在顺序地学习和记住多项任务是由于其灾难性遗忘(CF)问题而在实现一般人工智能方面面临艰难的挑战。幸运的是,最新的OWM正交权重修改)和其他几种连续学习(CL)方法表明了一些有希望的克服CF问题的方法。但是,现有的CL方法都没有探讨以下三个关键问题,以便有效地克服CF问题:即,它有助于在其顺序任务学习期间对NN的有效权重修改有所了解?当新学习任务的数据分布与先前学习的任务相对应的更改时,是否应该采用统一/特定的权重修改策略?对于给定的CL方法,可学习任务的上限是什么? ect。为了实现这一点,在本文中,我们首先揭示了新的学习任务的权重梯度的事实是由新任务的输入空间和先前学习任务的重量空间顺序确定。在这种观察和递归最小二乘法的情况下,我们通过增强型OWM提出了一种新的高效和有效的连续学习方法EOWM。我们理论上和明确地赋予了我们的EOWM的学习任务的上限。在基准测试上进行的广泛实验表明,我们的EOWM是有效性,优于所有最先进的CL基线。
translated by 谷歌翻译
尽管深度神经网络(DNN)在各种应用中取得了突出的性能,但众所周知,DNN易于在清洁/原始样品中具有难以察觉的扰动的对抗性实施例/样品(AES)。克服对抗对抗攻击的现有防御方法的弱点,这破坏了原始样本的信息,导致目标分类器精度的减少,提高了增强的反对对抗攻击方法IDFR(通过输入去噪和功能恢复) 。所提出的IDFR是由增强型输入丹麦优化的增强型输入丹麦(ID)和隐藏的有损特征恢复器(FR)组成。在基准数据集上进行的广泛实验表明,所提出的IDFR优于各种最先进的防御方法,对保护目标模型免受各种对抗黑盒或白盒攻击的高度有效。 \脚注{souce代码释放:\ href {https://github.com/id-fr/idfr} {https://github.com/id-fr/idfr}}
translated by 谷歌翻译
近年来,卷积神经网络(CNNS)已成功应用于许多领域。然而,这种深层神经模型仍然被视为大多数任务中的黑匣子。此问题的基本问题之一是了解图像识别任务中最有影响力的特点以及它们是由CNN处理的方式。众所周知,CNN模型将低级功能组合以形成复杂的形状,直到物体可以容易地分类,然而,最近的几项研究表明,纹理特征比其他特征更重要。在本文中,我们假设某些功能的重要性根据特定任务,即特定任务表现出特征偏差而变化。我们设计了基于人类直觉的两个分类任务,以培训深度神经模型来识别预期的偏见。我们设计了包括许多任务来测试reset和densenet模型的这些偏差的实验。从结果中,我们得出结论(1)某些功能的综合效果通常比任何单一特征更具影响力; (2)在不同的任务中,神经模型可以执行不同的偏见,即我们可以设计特定任务,以使神经模型偏向于特定的预期特征。
translated by 谷歌翻译
现代卷积神经网络(CNN)的面部探测器由于大量注释的数据集而取得了巨大的进步。但是,以高检测置信度未对准结果,但定位精度较低,限制了检测性能的进一步改善。在本文中,作者首先预测了训练集本身的高置信度检测结果。令人惊讶的是,其中相当一部分存在于同一未对准问题中。然后,作者仔细检查了这些案例,并指出注释未对准是主要原因。后来,对预测和注释的边界盒之间的替代合理性进行了全面讨论。最后,作者提出了一种新颖的边界盒深校准(BDC)方法,以通过模型预测的边界盒合理地替换未对准的注释,并为训练集提供校准的注释。在多个检测器和两个流行的基准数据集上进行了广泛的实验,显示了BDC对提高模型的精度和召回率的有效性,而无需添加额外的推理时间和记忆消耗。我们简单有效的方法为改善面部检测提供了一种一般策略,尤其是在实时情况下轻巧检测器的一般策略。
translated by 谷歌翻译