Brain extraction and registration are important preprocessing steps in neuroimaging data analysis, where the goal is to extract the brain regions from MRI scans (i.e., extraction step) and align them with a target brain image (i.e., registration step). Conventional research mainly focuses on developing methods for the extraction and registration tasks separately under supervised settings. The performance of these methods highly depends on the amount of training samples and visual inspections performed by experts for error correction. However, in many medical studies, collecting voxel-level labels and conducting manual quality control in high-dimensional neuroimages (e.g., 3D MRI) are very expensive and time-consuming. Moreover, brain extraction and registration are highly related tasks in neuroimaging data and should be solved collectively. In this paper, we study the problem of unsupervised collective extraction and registration in neuroimaging data. We propose a unified end-to-end framework, called ERNet (Extraction-Registration Network), to jointly optimize the extraction and registration tasks, allowing feedback between them. Specifically, we use a pair of multi-stage extraction and registration modules to learn the extraction mask and transformation, where the extraction network improves the extraction accuracy incrementally and the registration network successively warps the extracted image until it is well-aligned with the target image. Experiment results on real-world datasets show that our proposed method can effectively improve the performance on extraction and registration tasks in neuroimaging data. Our code and data can be found at https://github.com/ERNetERNet/ERNet
translated by 谷歌翻译
Deformable image registration, i.e., the task of aligning multiple images into one coordinate system by non-linear transformation, serves as an essential preprocessing step for neuroimaging data. Recent research on deformable image registration is mainly focused on improving the registration accuracy using multi-stage alignment methods, where the source image is repeatedly deformed in stages by a same neural network until it is well-aligned with the target image. Conventional methods for multi-stage registration can often blur the source image as the pixel/voxel values are repeatedly interpolated from the image generated by the previous stage. However, maintaining image quality such as sharpness during image registration is crucial to medical data analysis. In this paper, we study the problem of anti-blur deformable image registration and propose a novel solution, called Anti-Blur Network (ABN), for multi-stage image registration. Specifically, we use a pair of short-term registration and long-term memory networks to learn the nonlinear deformations at each stage, where the short-term registration network learns how to improve the registration accuracy incrementally and the long-term memory network combines all the previous deformations to allow an interpolation to perform on the raw image directly and preserve image sharpness. Extensive experiments on both natural and medical image datasets demonstrated that ABN can accurately register images while preserving their sharpness. Our code and data can be found at https://github.com/anonymous3214/ABN
translated by 谷歌翻译
Out-of-distribution (OOD) generalization on graphs is drawing widespread attention. However, existing efforts mainly focus on the OOD issue of correlation shift. While another type, covariate shift, remains largely unexplored but is the focus of this work. From a data generation view, causal features are stable substructures in data, which play key roles in OOD generalization. While their complementary parts, environments, are unstable features that often lead to various distribution shifts. Correlation shift establishes spurious statistical correlations between environments and labels. In contrast, covariate shift means that there exist unseen environmental features in test data. Existing strategies of graph invariant learning and data augmentation suffer from limited environments or unstable causal features, which greatly limits their generalization ability on covariate shift. In view of that, we propose a novel graph augmentation strategy: Adversarial Causal Augmentation (AdvCA), to alleviate the covariate shift. Specifically, it adversarially augments the data to explore diverse distributions of the environments. Meanwhile, it keeps the causal features invariant across diverse environments. It maintains the environmental diversity while ensuring the invariance of the causal features, thereby effectively alleviating the covariate shift. Extensive experimental results with in-depth analyses demonstrate that AdvCA can outperform 14 baselines on synthetic and real-world datasets with various covariate shifts.
translated by 谷歌翻译
历史互动是推荐模型培训的默认选择,通常表现出高稀疏性,即大多数用户项目对都是未观察到的缺失数据。标准选择是将缺失的数据视为负训练样本,并估计用户项目对之间的相互作用以及观察到的相互作用。通过这种方式,在训练过程中不可避免地会误标记一些潜在的互动,这将损害模型的保真度,阻碍模型回忆起错误标签的项目,尤其是长尾尾。在这项工作中,我们从新的不确定性的新角度研究了标签的问题,该问题描述了缺失数据的固有随机性。随机性促使我们超越了相互作用的可能性,并接受了不确定性建模。为此,我们提出了一个新的不确定性不确定性建议(AUR)框架,该框架由新的不确定性估计器以及正常的推荐模型组成。根据核心不确定性理论,我们得出了一个新的建议目标来学习估计量。由于错误标签的机会反映了一对的潜力,因此AUR根据不确定性提出了建议,该建议被证明是为了改善较不受欢迎的项目的建议性能而不会牺牲整体性能。我们在三个代表性推荐模型上实例化AUR:来自主流模型体系结构的矩阵分解(MF),LightGCN和VAE。两个现实世界数据集的广泛结果验证了AUR W.R.T.的有效性。更好的建议结果,尤其是在长尾项目上。
translated by 谷歌翻译
视觉多层感知器(MLP)在计算机视觉任务中表现出了有希望的表现,并成为CNNS和Vision Transformers的主要竞争对手。他们使用令牌混合层来捕获交叉互动,而不是变形金刚使用的多头自我发项机制。然而,严重的参数化令牌混合层自然缺乏捕获局部信息和多粒性非本地关系的机制,因此它们的判别能力受到限制。为了解决这个问题,我们提出了一个新的位置空间门控单元(POSGU)。它利用经典相对位置编码(RPE)中使用的注意力公式,以有效地编码令牌混合的交叉关系。它可以成功地将视觉MLP的当前二次参数复杂度$ O(n^2)$ $ O(n^2)$ o(n)$(n)$和$ o(1)$。我们实验了两种RPE机制,并进一步提出了一个小组扩展,以实现多种环境的成就,以提高其表现力。然后,它们是一种新型视觉MLP的关键构建块,称为POSMLP。我们通过进行彻底的实验来评估所提出的方法的有效性,证明参数复杂性的提高或可比性能得到了改善或可比性。例如,对于在ImagEnet1k上训练的模型,我们实现了从72.14 \%\%\%\%的绩效提高,并且可学习的参数从$ 194M $ $ $ $ $ $ $ $ 1.182亿美元。代码可以在\ href {https://github.com/zhicaiwww/posmlp} {https://github.com/zhicaiwww/posmlp}中找到代码。
translated by 谷歌翻译
知识图(kgs)在许多应用程序中越来越重要的基础架构,同时患有不完整问题。 KG完成任务(KGC)自动根据不完整的KG预测缺失的事实。但是,现有方法在现实情况下表现不佳。一方面,他们的性能将巨大的降解,而kg的稀疏性越来越大。另一方面,预测的推理过程是一个不可信的黑匣子。本文提出了一个稀疏kgc的新型可解释模型,将高阶推理组合到图形卷积网络中,即HOGRN。它不仅可以提高减轻信息不足问题的概括能力,而且还可以在保持模型的有效性和效率的同时提供可解释性。有两个主要组件无缝集成以进行关节优化。首先,高阶推理成分通过捕获关系之间的内源性相关性来学习高质量的关系表示。这可以反映逻辑规则,以证明更广泛的事实是合理的。其次,更新组件的实体利用无重量的图形卷积网络(GCN)有效地模拟具有可解释性的KG结构。与常规方法不同,我们在没有其他参数的情况下在关系空间中进行实体聚合和基于设计组成的注意。轻巧的设计使HOGRN更适合稀疏设置。为了进行评估,我们进行了广泛的实验 - HOGRN对几个稀疏KG的结果表现出了令人印象深刻的改善(平均为9%的MRR增益)。进一步的消融和案例研究证明了主要成分的有效性。我们的代码将在接受后发布。
translated by 谷歌翻译
领先的图对比度学习(GCL)方法在两个时尚中执行图形增强:(1)随机损坏锚图,这可能会导致语义信息的丢失,或(2)使用域知识维护显着特征,这破坏了对概括的概括其他域。从不变性看GCL时,我们认为高性能的增强应保留有关实例歧视的锚图的显着语义。为此,我们将GCL与不变的理由发现联系起来,并提出了一个新的框架,即理由吸引图形对比度学习(RGCL)。具体而言,没有监督信号,RGCL使用基本原理生成器来揭示有关图形歧视的显着特征作为理由,然后为对比度学习创建理由吸引的视图。这种理由意识到的预训练方案赋予了骨干模型具有强大的表示能力,从而进一步促进了下游任务的微调。在MNIST-SUPERPIXEL和MUTAG数据集上,对发现的理由的视觉检查展示了基本原理生成器成功捕获了显着特征(即区分图中的语义节点)。在生化分子和社交网络基准数据集上,RGCL的最新性能证明了理由意识到对比度学习的有效性。我们的代码可在https://github.com/lsh0520/rgcl上找到。
translated by 谷歌翻译
从观察数据中学习因果结构是机器学习的基本挑战。但是,大多数常用的可区分因果发现方法是不可识别的,这将此问题变成了容易发生数据偏差的连续优化任务。在许多现实生活中,数据是从不同环境中收集的,在不同的环境中,功能关系在整个环境中保持一致,而添加噪声的分布可能会有所不同。本文提出了可区分的因果发现(DICD),利用基于可区分框架的多环境信息,以避免学习虚假边缘和错误的因果方向。具体而言,DICD旨在在消除环境依赖性相关性的同时发现环境不变的因果关系。我们进一步制定了强制执行目标结构方程模型的约束,以在整个环境中保持最佳状态。在温和条件下提供了足够的环境,提供了针对拟议DICD的可识别性的理论保证。关于合成和现实世界数据集的广泛实验验证了DICD优于最先进的因果发现方法,而SHD中最高36%。我们的代码将是开源的。
translated by 谷歌翻译
学习强大的表示是图形神经网络(GNN)的一个中心主题。它需要从输入图中炼制关键信息,而不是琐碎的模式,以丰富表示。为此,图表注意力和汇集方法占上风。他们主要遵循“学会参加”的范式。它最大限度地提高了上述子图和地面真理标签之间的相互信息。然而,这种训练范例易于捕获微级子图和标签之间的虚假相关性。这种杂散的相关性对分布(ID)测试评估有益,但在分布外(OOD)测试数据中引起差的概括。在这项工作中,我们从因果角度重新审视GNN建模。在我们的因果假设之上,琐碎的信息是关键信息和标签之间的混淆,它在它们之间打开了一个后门路径,使它们保持虚拟相关。因此,我们提出了一个新的解压缩训练范式(DTP),更好地减轻了批评信息的混淆效果并锁存,以提高表示和泛化能力。具体而言,我们采用注意模块解开关键的子图和微不足道的子图。然后我们使每个关键的子图相当与不同的琐碎子图相互作用,以实现稳定的预测。它允许GNN捕获一个更可靠的子图,其与标签的关系跨越不同的分布。我们对综合和现实世界数据集进行了广泛的实验,以证明有效性。
translated by 谷歌翻译
隐式反馈的无处不是建立推荐系统不可或缺的反馈。但是,它实际上并没有反映用户的实际满意度。例如,在电子商务中,一大部分点击不转化为购买,许多购买结束了否定审查。因此,考虑隐性反馈中的不可避免的噪声是重要的。但是,建议的一点工作已经考虑了隐性反馈的嘈杂性。在这项工作中,我们探讨了向建议学习的识别隐含反馈的中心主题,包括培训和推论。通过观察正常推荐培训的过程,我们发现嘈杂的反馈通常在早期阶段中具有大的损失值。灵感来自这一观察,我们提出了一种新的培训策略,称为自适应去噪培训(ADT),其自适应地修剪了两个范式的嘈杂相互作用(即截断损失和重新减免)。此外,我们考虑额外的反馈(例如,评级)作为辅助信号,提出三种策略,将额外的反馈纳入ADT:FineTuning,预热训练和碰撞推断。我们在广泛使用的二进制交叉熵丢失上实例化了两个范式,并在三个代表推荐模型上测试它们。在三个基准测试中的广泛实验表明ADT在不使用额外反馈的情况下显着提高了正常培训的建议质量。此外,提出的三种策略用于使用额外反馈的主要原因是增强ADT的去噪能力。
translated by 谷歌翻译