视觉和听觉信息对于确定视频中的显着区域都是有价值的。深度卷积神经网络(CNN)展示了应对视听显着性预测任务的强大能力。由于各种因素,例如拍摄场景和天气,源训练数据和目标测试数据之间通常存在适度的分布差异。域差异导致CNN模型目标测试数据的性能降解。本文提前尝试解决视听显着性预测的无监督域适应问题。我们提出了一种双重域交流学习算法,以减轻源数据和目标数据之间的域差异。首先,建立了一个特定的域歧视分支,以对齐听觉功能分布。然后,这些听觉功能通过跨模式自我发项模块融合到视觉特征中。设计了其他域歧视分支,以减少视觉特征的域差异和融合视听特征所隐含的视听相关性的差异。公共基准测试的实验表明,我们的方法可以减轻域差异引起的性能降解。
translated by 谷歌翻译
激活压缩训练〜(ACT)已被证明是减少训练深神经网络中记忆消耗的一种有希望的方法。但是,现有的ACT工作依赖于在深神经网络(DNN)训练期间寻找最佳的位宽度以减少量化噪声,从而使过程变得复杂且透明。为此,我们提出了一种简单有效的DNN培训方法。我们的方法是由观察结果激励的:\ emph {DNN向后传播主要取决于激活图的低频组分〜(LFC),而不是高频组件〜(HFC)}。它表明激活图的HFC在DNN训练过程中是高度冗余和可压缩的,这激发了我们提出的双重激活精度〜(分裂)。在培训期间,分裂估计激活图的LFC和HFC,并将HFC压缩到低精度副本中以消除冗余。这可以大大减少记忆消耗,而不会对DNN向后传播的精度产生负面影响。这样,部门可以实现可比的表现与正常培训。三个基准数据集的实验结果表明,在记忆消耗,模型准确性和跑步速度方面,分裂的表现优于最先进的基线方法。
translated by 谷歌翻译
反事实是一种新兴的模型解释类型,最近引起了行业和学术界的大量关注。与传统的基于特征的解释(例如,归因)不同,反事实是一系列假设样本,可以将模型决策翻转而对查询的扰动最小。鉴于有效的反事实,人类能够在``假设的情况''的情况下进行推理,以便更好地理解模型决策边界。但是,释放反事实可能是有害的,因为它可能无意间泄漏敏感信息给对手,这给模型安全性和数据隐私带来了更高的风险。为了弥合差距,在本文中,我们提出了一个新颖的框架,以生成不同的私人反事实(DPC),而无需触摸已部署的模型或解释集,在该集合中注入了噪音以进行保护,同时保持反事实的解释作用。特别是,我们使用功能机制训练自动编码器来构建嘈杂的类原型,然后根据差异隐私的后处理免疫从潜在原型中得出DPC。进一步的评估证明了拟议框架的有效性,表明DPC可以成功缓解提取和推理攻击的风险。
translated by 谷歌翻译
现有的类新终身学习研究仅使用单标签的数据,这限制了其对多标签数据的适应性。本文研究了终身多标签(LML)分类,该分类在连续的多标签分类数据流中构建了在线类新型分类器。在LML分类中使用部分标签的数据培训可能会导致旧课程中更严重的灾难性遗忘。为了解决该问题,该研究提出了一个增强图卷积网络(AGCN),并在顺序的部分标签任务中具有建筑增强相关矩阵(ACM)。两个基准的结果表明,该方法可有效地分类和减少遗忘。
translated by 谷歌翻译
受益于医疗保健数据的数字化和计算能力的发展,机器学习方法越来越多地用于医疗领域。在医疗保健机器学习中已经确定了公平性问题,导致对有限医疗资源的不公平分配或某些群体的健康风险过多。因此,解决公平问题最近引起了医疗保健社区的越来越多的关注。然而,机器学习的机器学习与机器学习中的公平性的交集仍在研究中。在这篇综述中,我们通过暴露公平问题,总结可能的偏见,整理缓解方法并指出挑战以及未来的机会来建立桥梁。
translated by 谷歌翻译
尽管Shapley值为DNN模型预测提供了有效的解释,但该计算依赖于所有可能的输入特征联盟的枚举,这导致了指数增长的复杂性。为了解决这个问题,我们提出了一种新颖的方法剪切,以显着加速DNN模型的Shapley解释,其中计算中只有几个输入特征的联盟。特征联盟的选择遵循我们提出的Shapley链规则,以最大程度地减少地面shapley值的绝对误差,从而使计算既有效又准确。为了证明有效性,我们全面评估了跨多个指标的剪切,包括地面真相shapley价值的绝对误差,解释的忠诚和跑步速度。实验结果表明,剪切始终优于不同评估指标的最先进的基线方法,这证明了其在计算资源受到限制的现实应用程序中的潜力。
translated by 谷歌翻译
神经建筑搜索(NAS)算法可节省人类专家的巨大劳动。最近的进步进一步将计算开销降低到负担得起的水平。但是,由于挑剔的程序和监督的学习范式,将NAS技术部署在现实世界应用程序中仍然很麻烦。在这项工作中,我们通过允许自我审议并保留在搜索阶段发现的伴随的权重,提出了自我监管和举重的神经体系结构搜索(SSWP-NAS)作为当前NAS框架的扩展。因此,我们将NAS的工作流程简化为单阶段和无代理程序。实验表明,通过所提出的框架搜索的架构实现了CIFAR-10,CIFAR-100和Imagenet数据集上的最新精度,而无需使用手动标签。此外,我们表明,使用伴随的权重作为初始化始终优于随机初始化和两阶段的权重预训练方法,在半监督的学习方案下清晰的边缘。代码可在https://github.com/lzvv123456/sswp-nas上公开获得。
translated by 谷歌翻译
根据历史运动序列预测未来的运动是计算机视觉中的一个基本问题,并且在自主驾驶和机器人技术中具有广泛的应用。最近的一些作品表明,图形卷积网络(GCN)有助于对不同关节之间的关系进行建模。但是,考虑到人类运动数据中的变体和各种作用类型,由于解耦的建模策略,很难描绘时空关系的交叉依赖性,这也可能加剧了不足的概括问题。因此,我们提出时空门控速度ADJACENCY GCN(GAGCN)学习对各种作用类型的复杂时空依赖性。具体而言,我们采用门控网络来通过混合候选时空邻接矩阵获得的可训练的自适应邻接矩阵来增强GCN的概括。此外,GAGCN通过平衡时空建模的重量并融合了脱钩时空特征来解决空间和时间的交叉依赖性。对人类360万,积聚和3DPW的广泛实验表明,GAGCN在短期和长期预测中都能达到最先进的表现。
translated by 谷歌翻译
在边缘设备上部署深层神经网络〜(DNNS)为现实世界任务提供了有效的解决方案。边缘设备已用于在不同域中有效地收集大量数据。DNN是用于数据处理和分析的有效工具。但是,由于计算资源和内存有限,在边缘设备上设计DNN是具有挑战性的。为了应对这一挑战,我们演示了最大78000 DNN加速器上边缘设备的对象检测系统。它分别与摄像头和用于图像采集和检测展览的LCD显示器集成了启动DNN的推断。床是一种简洁,有效且详细的解决方案,包括模型培训,量化,合成和部署。实验结果表明,床可以通过300 kb微小的DNN模型产生准确的检测,该模型仅需91.9 ms的推理时间和1.845 MJ的能量。
translated by 谷歌翻译
我们介绍了一种新颖的屏蔽图AutoEncoder(MGAE)框架,以在图形结构数据上执行有效的学习。从自我监督学习中欣识见,我们随机掩盖了大部分边缘,并在训练期间尝试重建这些缺失的边缘。 Mgae有两个核心设计。首先,我们发现掩蔽了输入图结构的高比率,例如70 \%$,产生一个非凡和有意义的自我监督任务,使下游应用程序受益。其次,我们使用图形神经网络(GNN)作为编码器,以在部分掩蔽的图表上执行消息传播。为了重建大量掩模边缘,提出了一种定制的互相关解码器。它可以捕获多粒度的锚边的头部和尾部节点之间的互相关。耦合这两种设计使MGAE能够有效且有效地培训。在多个开放数据集(Planetoid和OGB基准测试)上进行了广泛的实验,证明MGAE通常比链接预测和节点分类更好地表现优于最先进的无监督竞争对手。
translated by 谷歌翻译