由于有效的检索速度和储存率低,因此学习哈希已被广泛用于视觉检索任务。但是,现有的哈希方法假定查询和检索样品位于同一域内的均匀特征空间中。结果,它们不能直接应用于异质的跨域检索。在本文中,我们提出了一个广义图像转移检索(GITR)问题,该问题遇到了两个关键的瓶颈:1)查询和检索样品可能来自不同的域,导致不可避免的{域分布gap}; 2)两个域的特征可能是异质的或未对准的,从而增加了{特征差距}。为了解决GITR问题,我们提出了一个不对称的转移哈希(ATH)框架,其无监督/半监督/监督的实现。具体而言,ATH通过两个不对称的哈希函数之间的差异来表征域分布差距,并借助于跨域数据构建的新型自适应双分部分图,从而最小化特征差距。通过共同优化不对称的哈希功能和两分图,不仅可以实现知识转移,而且还可以避免由特征比对引起的信息损失。同时,为了减轻负转移,通过涉及域亲和图来保留单域数据的内在几何结构。对不同GITR子任务下的单域和跨域基准测试的广泛实验表明,与最新的哈希方法相比,我们的ATH方法的优越性。
translated by 谷歌翻译
现实世界优化问题可能具有不同的基础结构。在黑盒优化中,决策变量之间的依赖关系仍然未知。但是,某些技术可以准确发现此类相互作用。在大规模的全球优化(LSGO)中,问题是高维的。显示出将LSGO问题分解为子问题并分别优化它们有效。这种方法的有效性可能高度取决于问题分解的准确性。许多最新的分解策略来自差分组(DG)。但是,如果给定的问题由不可分离的子问题组成,则它们仅检测真实相互作用的能力可能会大大减少。因此,我们提出了不遭受此缺陷的增量递归排名分组(IRRG)。 IRRG比最近基于DG的命题(例如递归DG 3(RDG3))消耗更多的健身功能评估。然而,对于适合RDG3的可添加性可分离子问题而言,嵌入IRRG或RDG3后所考虑的合作共同进化框架的有效性相似。但是,在用非添加的嵌入IRRG代替可分离性后,IRRG会导致质量明显更高的结果。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
目前全面监督的面部地标检测方法迅速进行,实现了显着性能。然而,当在大型姿势和重闭合的面孔和重闭合时仍然遭受痛苦,以进行不准确的面部形状约束,并且标记的训练样本不足。在本文中,我们提出了一个半监督框架,即自我校准的姿势注意网络(SCPAN),以实现更具挑战性的情景中的更强大和精确的面部地标检测。具体地,建议通过定影边界和地标强度场信息来模拟更有效的面部形状约束的边界意识的地标强度(BALI)字段。此外,设计了一种自我校准的姿势注意力(SCPA)模型,用于提供自学习的目标函数,该功能通过引入自校准机制和姿势注意掩模而无需标签信息而无需标签信息。我们认为,通过将巴厘岛领域和SCPA模型集成到新颖的自我校准的姿势网络中,可以了解更多的面部现有知识,并且我们的面孔方法的检测精度和稳健性得到了改善。获得具有挑战性的基准数据集获得的实验结果表明,我们的方法优于文献中最先进的方法。
translated by 谷歌翻译
我们介绍了一种新的损失函数TriplePropy,提高微调普通知识的分类性能,基于交叉熵和软损失。这种损失功能可以通过跨熵损失改善强大的罗伯拉基线模型,大约(0.02% - 2.29%)。对流行数据集的彻底测试表示稳定增益。训练数据集中的样品越小,增益越高,对于小型数据集而言,其为0.78%,用于中等大小 - 0.86%,大约0.20%,超大0.04%。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
人工智能/机器学习方法的进步提供了在科学研究中具有广泛适用性的工具。这些技术正在跨越核物理研究主题的多样性,从而推进将有助于科学发现和社会应用。该审查提供了一种由人工智能和机器学习技术改变的核物理研究的快照。
translated by 谷歌翻译
现代车辆配备各种驾驶员辅助系统,包括自动车道保持,这防止了无意的车道偏离。传统车道检测方法采用了手工制作或基于深度的学习功能,然后使用基于帧的RGB摄像机进行通道提取的后处理技术。用于车道检测任务的帧的RGB摄像机的利用易于照明变化,太阳眩光和运动模糊,这限制了车道检测方法的性能。在自主驾驶中的感知堆栈中结合了一个事件摄像机,用于自动驾驶的感知堆栈是用于减轻基于帧的RGB摄像机遇到的挑战的最有希望的解决方案之一。这项工作的主要贡献是设计车道标记检测模型,它采用动态视觉传感器。本文探讨了使用事件摄像机通过设计卷积编码器后跟注意引导的解码器的新颖性应用了车道标记检测。编码特征的空间分辨率由致密的区域空间金字塔池(ASPP)块保持。解码器中的添加剂注意机制可提高促进车道本地化的高维输入编码特征的性能,并缓解后处理计算。使用DVS数据集进行通道提取(DET)的DVS数据集进行评估所提出的工作的功效。实验结果表明,多人和二进制车道标记检测任务中的5.54 \%$ 5.54 \%$ 5.54 \%$ 5.03 \%$ 5.03 \%$ 5.03。此外,在建议方法的联盟($ iou $)分数上的交叉点将超越最佳最先进的方法,分别以6.50 \%$ 6.50 \%$ 6.5.37 \%$ 9.37 \%$ 。
translated by 谷歌翻译