样本分配在现代对象检测方法中起着重要的作用。但是,大多数现有的方法都依靠手动设计来分配正 /负样本,这些样本并未明确建立样本分配和对象检测性能之间的关系。在这项工作中,我们提出了一种基于高参数搜索的新型动态样本分配方案。我们首先将分配给每个地面真理的正样本的数量定义为超参数,并采用替代优化算法来得出最佳选择。然后,我们设计一个动态的样本分配过程,以动态选择每个训练迭代中的最佳阳性数量。实验表明,所得的HPS-DET在不同对象检测基线的基线上带来了改善的性能。此外,我们分析了在不同数据集之间和不同骨架之间转移的高参数可重复使用性,以进行对象检测,这表现出我们方法的优势和多功能性。
translated by 谷歌翻译
解决组合优化(CO)问题的传统求解器通常是由人类专家设计的。最近,人们对利用深度学习,尤其是深度强化学习的兴趣激增,自动为CO学习有效的求解器。由此产生的新范式称为神经组合优化(NCO)。但是,在经验或理论上,NCO的优势和缺点与其他方法的优势尚未得到很好的研究。在这项工作中,我们介绍了NCO求解器和替代求解器的全面比较研究。具体而言,将旅行推销员问题作为测试床问题,我们根据五个方面(即有效性,效率,稳定性,可扩展性和概括能力)评估求解器的性能。我们的结果表明,通常,NCO方法学到的求解器几乎在所有这些方面仍然没有传统求解器。前者的潜在好处将是在有足够的培训实例时,他们在小规模的问题实例上的卓越时间和能源效率。我们希望这项工作将有助于更好地理解NCO的优势和劣势,并提供全面的评估协议,以进一步对NCO进行针对其他方法的基准测试。
translated by 谷歌翻译
本文提出了一种新方法,该方法融合了混响场中的声学测量和低临界性惯性测量单元(IMU)运动报告,以同时定位和映射(SLAM)。与仅使用声学数据进行到达方向(DOA)估计的现有研究不同,源与传感器的距离是通过直接到依次的能量比(DRR)计算的,并用作新约束以消除非线性噪声从运动报告。应用粒子过滤器估计临界距离,这是将源距离与DRR关联的关键。使用密钥帧方法来消除源位置估计向机器人的偏差。拟议的DOA-DRR声学大满贯(D-D大满贯)设计用于三维运动,适合大多数机器人。该方法是第一个在现实世界中仅包含声学数据和IMU测量值的现实世界室内场景数据集上验证的声学大满贯算法。与以前的方法相比,D-D SLAM在定位机器人和从现实世界室内数据集中构建源地图方面具有可接受的性能。平均位置精度为0.48 m,而源位置误差在2.8 s内收敛到小于0.25 m。这些结果证明了D-D SLAM在现实世界室内场景中的有效性,这可能在环境有雾(即不适合光或激光辐照的环境)之后特别有用。
translated by 谷歌翻译
随着卷积神经网络(CNN)的蓬勃发展,诸如VGG-16和Resnet-50之类的CNN广泛用作SAR船检测中的骨架。但是,基于CNN的骨干很难对远程依赖性进行建模,并且导致缺乏浅层特征图中缺乏足够的高质量语义信息,从而导致在复杂的背景和小型船只中的检测性能不佳。为了解决这些问题,我们提出了一种基于SWIN Transformer的SAR船检测方法,并提出了功能增强功能功能金字塔网络(FEFPN)。SWIN Transformer用作建模远程依赖性并生成层次特征图的骨架。提出了FEFPN,以进一步提高特征地图的质量,通过逐渐增强各级特征地图的语义信息,尤其是浅层中的特征地图。在SAR船检测数据集(SSDD)上进行的实验揭示了我们提出的方法的优势。
translated by 谷歌翻译
我们介绍了第一个基于学习的可重建性预测指标,以改善使用无人机的大规模3D城市场景获取的视图和路径计划。与以前的启发式方法相反,我们的方法学习了一个模型,该模型明确预测了从一组观点重建3D城市场景的能力。为了使这种模型可训练并同时适用于无人机路径计划,我们在培训期间模拟了基于代理的3D场景重建以设置预测。具体而言,我们设计的神经网络经过训练,可以预测场景的重构性,这是代理几何学的函数,一组观点,以及在飞行中获得的一系列场景图像。为了重建一个新的城市场景,我们首先构建了3D场景代理,然后依靠我们网络的预测重建质量和不确定性度量,基于代理几何形状,以指导无人机路径计划。我们证明,与先前的启发式措施相比,我们的数据驱动的可重建性预测与真实的重建质量更加紧密相关。此外,我们学到的预测变量可以轻松地集成到现有的路径计划中,以产生改进。最后,我们根据学习的可重建性设计了一个新的迭代视图计划框架,并在重建合成场景和真实场景时展示新计划者的卓越性能。
translated by 谷歌翻译
基于骨架的动作识别会受到越来越多的关注,因为骨架表示通过消除与动作无关的视觉信息来减少训练数据的量。为了进一步提高样本效率,为基于骨架的动作识别而开发了基于元学习的一局学习解决方案。这些方法根据实例级全局平均嵌入之间的相似性找到最近的邻居。但是,由于对局部不变和嘈杂特征的广义学习不足,这种测量具有不稳定的代表性,而直觉上,更细粒度的识别通常依赖于确定关键的局部身体运动。为了解决这一限制,我们介绍了自适应的局部成分感知图卷积网络,该网络将比较指标替换为相似性测量的集中之和,以对对齐的局部局部嵌入行动至关重要的空间/时间段。 NTU-RGB+D 120公共基准的全面单发实验表明,我们的方法比全球嵌入提供了更强的表示,并有助于我们的模型达到最新的最新能力。
translated by 谷歌翻译
在推荐系统中,项目可能会接触到各种用户,我们想了解新用户对现有项目的熟悉。这可以作为异常检测(AD)问题进行配置,该问题区分“普通用户”(名义)和“新用户”(异常)。考虑到物品的庞大数量和用户项目配对数据的稀疏性,在每个项目上独立应用传统的单任务检测方法很快就变得困难,而项目之间的相关性则被忽略。为了解决这个多任务异常检测问题,我们建议协作异常检测(CAD)共同学习所有任务,并通过任务之间的嵌入编码相关性来学习所有任务。我们通过条件密度估计和条件可能性比估计来探索CAD。我们发现:$ i $)估计似然比的学习效率更高,并且比密度估计更好。 $ ii $)提前选择少量任务以学习任务嵌入模型,然后使用它来启动所有任务嵌入是有益的。因此,这些嵌入可以捕获任务之间的相关性并推广到新的相关任务。
translated by 谷歌翻译
预测公路参与者的未来运动对于自动驾驶至关重要,但由于令人震惊的运动不确定性,因此极具挑战性。最近,大多数运动预测方法求助于基于目标的策略,即预测运动轨迹的终点,作为回归整个轨迹的条件,以便可以减少解决方案的搜索空间。但是,准确的目标坐标很难预测和评估。此外,目的地的点表示限制了丰富的道路环境的利用,从而导致预测不准确。目标区域,即可能的目的地区域,而不是目标坐标,可以通过涉及更多的容忍度和指导来提供更软的限制,以搜索潜在的轨迹。考虑到这一点,我们提出了一个新的基于目标区域的框架,名为“目标区域网络”(GANET)进行运动预测,该框架对目标区域进行了建模,而不是确切的目标坐标作为轨迹预测的先决条件,更加可靠,更准确地执行。具体而言,我们建议一个goicrop(目标的目标区域)操作员有效地提取目标区域中的语义巷特征,并在目标区域和模型演员的未来互动中提取语义巷,这对未来的轨迹估计很大。 Ganet在所有公共文献(直到论文提交)中排名第一个,将其源代码排在第一位。
translated by 谷歌翻译
通过最近基于深度学习的方法显示出令人鼓舞的结果,可以消除图像中的噪音,在有监督的学习设置中报道了最佳的降级性能,该设置需要大量的配对嘈杂图像和训练的基础真相。强大的数据需求可以通过无监督的学习技术来减轻,但是,对于高质量的解决方案,图像或噪声方差的准确建模仍然至关重要。对于未知的噪声分布而言,学习问题不足。本文研究了单个联合学习框架中图像降解和噪声方差估计的任务。为了解决问题的不良性,我们提出了深度差异先验(DVP),该差异指出,适当学到的DeNoiser在噪声变化方面的变化满足了一些平滑度的特性,这是良好DeNoiser的关键标准。建立在DVP的基础上,这是一个无监督的深度学习框架,同时学习了Denoiser并估算了噪声差异。我们的方法不需要任何干净的训练图像或噪声估计的外部步骤,而是仅使用一组嘈杂的图像近似于最小平方误差Denoisiser。在一个框架中考虑了两个基本任务,我们允许它们相互优化。实验结果表明,具有与监督的学习和准确的噪声方差估计值相当的质量。
translated by 谷歌翻译
尽管变形金刚及其变体构象体在语音识别方面表现出了有希望的表现,但参数化的属性在训练和推理过程中导致了很大的记忆成本。一些作品使用跨层重量分享来减少模型的参数。但是,不可避免的能力损失会损害模型性能。为了解决这个问题,本文提出了通过共享稀疏门控专家的参数效率构象异构体。具体而言,我们使用稀疏门控的专家(MOE)来扩展构型块的容量而不增加计算。然后,共享分组构象块的参数,以减少参数的数量。接下来,为了确保具有不同级别适应表示的灵活性的共享块,我们会单独设计MOE路由器和标准化。此外,我们使用知识蒸馏来进一步提高性能。实验结果表明,与全参数模型相比,所提出的模型用编码器的1/3来实现竞争性能。
translated by 谷歌翻译