复杂的流量分析,例如加密的流量分析和未知的恶意软件检测,强调需要进行高级方法来分析网络流量。使用固定模式,签名匹配和检测网络流量中已知模式的规则的传统方法已被AI(人工智能)驱动算法取代。但是,缺乏高性能AI网络特定的框架使得不可能在网络工作负载中部署基于AI的实时处理。在本文中,我们描述了流量分析开发工具包(TADK)的设计,这是一个针对基于AI的网络工作负载处理的行业标准框架。 TADK可以在数据中心到边缘的网络设备中基于实时的AI网络工作负载处理,而无需专门硬件(例如GPU,神经处理单元等)。我们已经在商品WAF和5G UPF中部署了TADK,评估结果表明,Tadk可以在流量功能提取时达到每个核心最多35.3Gbps的吞吐量,每核6.5Gbps在流量分类中,并且可以减少SQLI/XSS检测到下降至4.5us每个请求的精度比固定模式解决方案更高。
translated by 谷歌翻译
标签感建议是通过标记行为预测用户个性化项目的任务。对于具有Last.FM或Movielens等标记功能的许多应用程序至关重要。最近,许多努力致力于通过图形卷积网络(GCN)改进引人注目的推荐系统(TRS),这已成为一般建议的新最新技术。但是,某些解决方案是直接从GCN继承而没有理由的,这很难缓解标签引入的稀疏性,模棱两可和冗余问题,从而增加了培训和退化建议性能的困难。在这项工作中,我们旨在简化GCN的设计,以使其更简洁。我们提出了一个新颖的标签推荐模型,名为Light Folksonomy图协作滤波(LFGCF),该模型仅包括必需的GCN组件。具体而言,LFGCF首先从用户分配标签和项目标记的用户记录中构造了人们图形。然后,我们利用汇总的简单设计来学习人们对人物学图的高级表示形式,并使用在多个层中学习的嵌入的加权总和进行信息更新。我们共享标签嵌入,以弥合用户和项目之间的信息差距。此外,提出了一个名为Transrt的正规化功能,以更好地描述用户的偏好和项目功能。对三个现实世界数据集的广泛超参数实验和消融研究表明,LFGCF使用的参数较少,并且显着优于大多数基线的Tag-Aware Top-N建议。
translated by 谷歌翻译
由于诸如CNN等尖端技术的应用,未经监测视频中的事件分析引起了不断的关注。作为基于CNN的模型的良好研究的属性,接收领域是用于测量由单个特征响应覆盖的空间范围的测量,这对于提高图像分类精度是至关重要的。在视频域中,实际上通过不同概念之间的复杂交互描述了视频事件语义,而他们的行为从一个视频差异差异,导致基于概念的分析难以准确的事件分类。为了模拟概念行为,我们研究基于概念的事件表示的时间概念接受领域,其编码不同中级概念的时间发生模式。因此,我们介绍了时间动态卷积(TDC),为基于概念的事件分析提供了更强的灵活性。 TDC可以根据不同的输入动态调整时间概念接收字段大小。值得注意的是,学习一组系数以使多个卷积的结果融合,具有提供各种时间概念接收场大小的不同内核宽度。根据输入视频并突出至关重要的概念,不同的系数可以产生适当和准确的时间概念接收场大小。基于TDC,我们提出了时间动态概念建模网络(TDCMN)来学习有效的未经监测视频分析的准确和完整的概念表示。 FCVID和ActivityNet上的实验结果表明,TDCMN在不同的输入上展示了适应性事件识别能力,并通过大边距提高基于概念的方法的事件识别性能。代码可在https://github.com/qzhb/tdcmn获得。
translated by 谷歌翻译
近年来,人群计数已成为计算机视觉中的重要问题。在大多数方法中,密度图是通过从地面图中与人头中心标记的地面图图中的高斯内核进行卷积而产生的。由于CNN中的固定几何结构和模糊的头尺度信息,因此无法完全获得头部特征。提出了可变形的卷积来利用头部中CNN特征的尺度自适应能力。通过学习采样点的坐标偏移,可以提高调整接受场的能力。但是,头部在可变形卷积中的采样点并不统一,从而导致头部信息丢失。为了处理不均匀的采样,在本文中提出了改进的规范性卷积(\ textit {i.e。受NDLOSS限制的采样点的偏移往往更加均匀。然后,更完整地获得了头部中的功能,从而获得更好的性能。尤其是,拟议的NDCONV是一个轻巧的模块,与可变形卷积具有相似的计算负担。在广泛的实验中,我们的方法优于上海A,Shanghaitech B,UCF \ _QNRF和UCF \ _CC \ _50数据集,分别实现61.4、7.8、91.2和167.2 MAE。该代码可从https://github.com/bingshuangzhuzi/ndconv获得
translated by 谷歌翻译
过度平滑是一个具有挑战性的问题,这会降低深图卷积网络(GCNS)的性能。然而,用于缓解过度平滑问题的现有研究缺乏一般性或有效性。在本文中,我们分析了过度平滑问题背后的潜在问题,即特征 - 多样性退化,梯度消失和模型重量衰减。灵感来自于此,我们提出了一个简单而有效的即插即用模块,速度,缓解过度平滑。具体地,对于GCN模型的每个中间层,随机地(或基于节点度)选择节点以通过直接向非线性函数馈送它们的输入特征来跳过卷积操作。分析,1)跳过卷积操作可以防止特征失去多样性; 2)“跳过”节点使能梯度直接传递回来,从而减轻梯度消失和模型权重过腐蚀问题。为了展示Skipnode的优越性,我们对九个流行的数据集进行了广泛的实验,包括同性恋和异化图,在两个典型的任务上具有不同的图表大小:节点分类和链路预测。具体而言,1)SkipNode具有适应不同数据集和任务的各种基于GCN的模型的普遍性。 2)Skipnode优于最近最先进的反平滑插头 - 播放模块,即DropEdge和Dropnode,在不同的设置中。代码将在GitHub上公开提供。
translated by 谷歌翻译
完全有监督的语义细分从密集的口罩中学习,这需要封闭设置的大量注释成本。在本文中,我们使用自然语言作为监督,而无需任何像素级注释进行开放世界细分。我们将提出的框架称为FreeSeg,在该框架上可以从训练训练型模型的原始功能图中免费获得。与零射击或开放集分割相比,freeSeg不需要任何带注释的掩码,并且可以广泛预测超出类无需监督的分段之外的类别。具体而言,FreeSeg从图像文本相似性图(ITSM)中获得了可解释的对比度图像预处理(ICLIP)的自由掩码。我们的核心改进是浓密ICLIP的平滑最小池,具有部分标签和像素的分割策略。此外,没有复杂的设计,例如分组,聚类或检索,很简单。除了简单性外,Freeseg的表现超过了以前的最先进的边缘,例如在同一设置中,MIOU在MIOU上的13.4%。
translated by 谷歌翻译
鉴于其广泛的应用,已经对人面部交换的任务进行了许多尝试。尽管现有的方法主要依赖于乏味的网络和损失设计,但它们仍然在源和目标面之间的信息平衡中挣扎,并倾向于产生可见的人工制品。在这项工作中,我们引入了一个名为StylesWap的简洁有效的框架。我们的核心想法是利用基于样式的生成器来增强高保真性和稳健的面部交换,因此可以采用发电机的优势来优化身份相似性。我们仅通过最小的修改来确定,StyleGAN2体系结构可以成功地处理来自源和目标的所需信息。此外,受到TORGB层的启发,进一步设计了交换驱动的面具分支以改善信息的融合。此外,可以采用stylegan倒置的优势。特别是,提出了交换引导的ID反转策略来优化身份相似性。广泛的实验验证了我们的框架会产生高质量的面部交换结果,从而超过了最先进的方法,既有定性和定量。
translated by 谷歌翻译
应用于物理工程系统的纯粹数据驱动的深神经网络(DNN)可以推断出违反物理定律的关系,从而导致意外后果。为了应对这一挑战,我们提出了一个基于物理模型的DNN框架,即Phy-Taylor,该框架以物理知识加速了学习合规的表示。 Phy-Taylor框架做出了两个关键的贡献。它引入了一个新的建筑物理兼容神经网络(PHN),并具有新颖的合规机制,我们称{\ em物理学引导的神经网络编辑\/}。 PHN的目的是直接捕获受物质量的启发的非线性,例如动能,势能,电力和空气动力阻力。为此,PHN增强了具有两个关键组成部分的神经网络层:(i)泰勒级数序列扩展的非线性功能捕获物理知识的扩展,以及(ii)缓解噪声影响的抑制器。神经网络编辑机制进一步修改了网络链接和激活功能与物理知识一致。作为扩展,我们还提出了一个自我校正的Phy-Taylor框架,该框架介绍了两个其他功能:(i)基于物理模型的安全关系学习,以及(ii)在违反安全性的情况下自动输出校正。通过实验,我们表明(通过直接表达难以学习的非线性并通过限制依赖性)Phy-Taylor的特征较少的参数和明显加速的训练过程,同时提供增强的模型稳健性和准确性。
translated by 谷歌翻译
最近的研究表明,减少时间和空间冗余都是有效的视频识别方法的有效方法,例如,将大多数计算分配给与任务相关的框架或每个帧中最有价值的图像区域。但是,在大多数现有的作品中,任何一种类型的冗余通常都是用另一个缺失建模的。本文探讨了在最近提出的ADAFOCUSV2算法之上的时空动态计算的统一配方,从而有助于改进的ADAFOCUSV3框架。我们的方法仅在一些小但有益的3D视频立方体上激活昂贵的高容量网络来降低计算成本。这些立方体是从框架高度,宽度和视频持续时间形成的空间中裁剪的,而它们的位置则以每样本样本为基础的轻加权政策网络自适应地确定。在测试时间,与每个视频相对应的立方体的数量是动态配置的,即,对视频立方体进行顺序处理,直到产生足够可靠的预测为止。值得注意的是,可以通过近似可插入深度特征的插值来有效地训练adafocusv3。六个基准数据集(即ActivityNet,FCVID,Mini-Kinetics,Something Something V1&V2和潜水48)上的广泛经验结果表明,我们的模型比竞争性基线要高得多。
translated by 谷歌翻译
非视线(NLOS)成像是一种用于检测障碍物或角落周围物体的物体的新兴技术。关于被动NLOS的最新研究主要集中在稳态测量和重建方法上,这些方法显示出识别移动目标的局限性。据我们所知,我们提出了一种新颖的基于事件的无源NLOS成像方法。我们获得了基于事件的异步数据,其中包含NLOS目标的详细动态信息,并有效缓解由运动引起的斑点降解。此外,我们创建了第一个基于事件的NLOS成像数据集NLOS-ES,并且由时间表面表示提取基于事件的功能。我们通过基于事件的数据与基于框架的数据比较重建。基于事件的方法在PSNR和LPIP上表现良好,该方法比基于框架的方法好20%和10%,而数据量仅占传统方法的2%。
translated by 谷歌翻译