Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
Image token removal is an efficient augmentation strategy for reducing the cost of computing image features. However, this efficient augmentation strategy has been found to adversely affect the accuracy of CLIP-based training. We hypothesize that removing a large portion of image tokens may improperly discard the semantic content associated with a given text description, thus constituting an incorrect pairing target in CLIP training. To address this issue, we propose an attentive token removal approach for CLIP training, which retains tokens with a high semantic correlation to the text description. The correlation scores are computed in an online fashion using the EMA version of the visual encoder. Our experiments show that the proposed attentive masking approach performs better than the previous method of random token removal for CLIP training. The approach also makes it efficient to apply multiple augmentation views to the image, as well as introducing instance contrastive learning tasks between these views into the CLIP framework. Compared to other CLIP improvements that combine different pre-training targets such as SLIP and MaskCLIP, our method is not only more effective, but also much more efficient. Specifically, using ViT-B and YFCC-15M dataset, our approach achieves $43.9\%$ top-1 accuracy on ImageNet-1K zero-shot classification, as well as $62.7/42.1$ and $38.0/23.2$ I2T/T2I retrieval accuracy on Flickr30K and MS COCO, which are $+1.1\%$, $+5.5/+0.9$, and $+4.4/+1.3$ higher than the SLIP method, while being $2.30\times$ faster. An efficient version of our approach running $1.16\times$ faster than the plain CLIP model achieves significant gains of $+5.3\%$, $+11.3/+8.0$, and $+9.5/+4.9$ on these benchmarks.
translated by 谷歌翻译
Evaluating neural network performance is critical to deep neural network design but a costly procedure. Neural predictors provide an efficient solution by treating architectures as samples and learning to estimate their performance on a given task. However, existing predictors are task-dependent, predominantly estimating neural network performance on image classification benchmarks. They are also search-space dependent; each predictor is designed to make predictions for a specific architecture search space with predefined topologies and set of operations. In this paper, we propose a novel All-in-One Predictor (AIO-P), which aims to pretrain neural predictors on architecture examples from multiple, separate computer vision (CV) task domains and multiple architecture spaces, and then transfer to unseen downstream CV tasks or neural architectures. We describe our proposed techniques for general graph representation, efficient predictor pretraining and knowledge infusion techniques, as well as methods to transfer to downstream tasks/spaces. Extensive experimental results show that AIO-P can achieve Mean Absolute Error (MAE) and Spearman's Rank Correlation (SRCC) below 1% and above 0.5, respectively, on a breadth of target downstream CV tasks with or without fine-tuning, outperforming a number of baselines. Moreover, AIO-P can directly transfer to new architectures not seen during training, accurately rank them and serve as an effective performance estimator when paired with an algorithm designed to preserve performance while reducing FLOPs.
translated by 谷歌翻译
Unsupervised image registration commonly adopts U-Net style networks to predict dense displacement fields in the full-resolution spatial domain. For high-resolution volumetric image data, this process is however resource intensive and time-consuming. To tackle this problem, we propose the Fourier-Net, replacing the expansive path in a U-Net style network with a parameter-free model-driven decoder. Specifically, instead of our Fourier-Net learning to output a full-resolution displacement field in the spatial domain, we learn its low-dimensional representation in a band-limited Fourier domain. This representation is then decoded by our devised model-driven decoder (consisting of a zero padding layer and an inverse discrete Fourier transform layer) to the dense, full-resolution displacement field in the spatial domain. These changes allow our unsupervised Fourier-Net to contain fewer parameters and computational operations, resulting in faster inference speeds. Fourier-Net is then evaluated on two public 3D brain datasets against various state-of-the-art approaches. For example, when compared to a recent transformer-based method, i.e., TransMorph, our Fourier-Net, only using 0.22$\%$ of its parameters and 6.66$\%$ of the mult-adds, achieves a 0.6\% higher Dice score and an 11.48$\times$ faster inference speed. Code is available at \url{https://github.com/xi-jia/Fourier-Net}.
translated by 谷歌翻译
Recent lay language generation systems have used Transformer models trained on a parallel corpus to increase health information accessibility. However, the applicability of these models is constrained by the limited size and topical breadth of available corpora. We introduce CELLS, the largest (63k pairs) and broadest-ranging (12 journals) parallel corpus for lay language generation. The abstract and the corresponding lay language summary are written by domain experts, assuring the quality of our dataset. Furthermore, qualitative evaluation of expert-authored plain language summaries has revealed background explanation as a key strategy to increase accessibility. Such explanation is challenging for neural models to generate because it goes beyond simplification by adding content absent from the source. We derive two specialized paired corpora from CELLS to address key challenges in lay language generation: generating background explanations and simplifying the original abstract. We adopt retrieval-augmented models as an intuitive fit for the task of background explanation generation, and show improvements in summary quality and simplicity while maintaining factual correctness. Taken together, this work presents the first comprehensive study of background explanation for lay language generation, paving the path for disseminating scientific knowledge to a broader audience. CELLS is publicly available at: https://github.com/LinguisticAnomalies/pls_retrieval.
translated by 谷歌翻译
车道检测是自动驾驶中的基本模块之一。在本文中,我们采用了一种仅变压器的方法来进行车道检测,因此,它可以受益于完全视觉变压器的开发,并通过精细的 - 通过精细 - 通过精细 - 通过精细的 - 调整重量在大型数据集上进行全面训练。更重要的是,本文提出了一个名为Priorlane的新颖和一般框架,该框架用于通过引入低成本的局部先验知识来增强完全视觉变压器的分割性能。 PriorLane利用仅编码变压器来融合由预训练的分割模型与先验知识嵌入的功能融合。请注意,知识嵌入对齐(KEA)模块可通过对齐知识嵌入来提高融合性能。我们ZJLAB数据集的广泛实验表明,Prior-Lane以2.82%MIOU优于SOTA LANE检测方法,并且该代码将在以下位置发布:https:// github。 com/vincentqqb/priorlane。
translated by 谷歌翻译
知识图(kg)嵌入是一种主流方法,用于推理不完整的kg。但是,受其固有浅层和静态体系结构的限制,它们几乎无法处理对复杂逻辑查询的不断上升,这些查询包括逻辑运算符,估算的边缘,多个源实体和未知的中间实体。在这项工作中,我们通过掩盖的预训练和微调策略介绍了知识图变压器(kgtransformer)。我们设计了一种kg三重变换方法,以使变压器能够处理kg,这是通过稀疏(MOE)稀疏激活的混合物进一步增强的。然后,我们将复杂的逻辑查询作为掩盖预测提出,并引入了两阶段掩盖的预训练策略,以提高可转移性和概括性。在两个基准上进行的广泛实验表明,KGTRANSFORMER可以始终超过基于KG的基准和九个内域和室外推理任务的高级编码。此外,KGTRANSFORMER可以通过提供解释给定答案的完整推理路径来解释性。
translated by 谷歌翻译
尽管固定环境中的单一机构政策优化最近在增强学习社区中引起了很多研究的关注,但是当在潜在竞争性的环境中有多个代理商在玩耍时,从理论上讲,少得多。我们通过提出和分析具有结构化但未知过渡的零和Markov游戏的新的虚拟游戏策略优化算法来向前迈进。我们考虑两类的过渡结构:分类的独立过渡和单个控制器过渡。对于这两种情况,我们都证明了紧密的$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$遗憾的范围在$ k $ eviepodes之后,在两种代理竞争的游戏场景中。每个代理人的遗憾是针对潜在的对抗对手的衡量,他们在观察完整的政策序列后可以在事后选择一个最佳政策。我们的算法在非平稳环境中同时进行政策优化的范围下,具有上置信度结合(UCB)的乐观和虚拟游戏的结合。当两个玩家都采用所提出的算法时,他们的总体最优差距为$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$。
translated by 谷歌翻译
根据一般静态障碍物检测的要求,本文提出了无人接地车辆局部静态环境的紧凑型矢量化表示方法。首先,通过融合LiDAR和IMU的数据,获得了高频姿势信息。然后,通过二维(2D)障碍物点的生成,提出了具有固定尺寸的网格图维护过程。最后,通过多个凸多边形描述了局部静态环境,该多边形实现了基于双阈值的边界简化和凸多边形分割。我们提出的方法已应用于公园的一个实用无人驾驶项目中,典型场景的定性实验结果验证了有效性和鲁棒性。此外,定量评估表明,与传统的基于网格地图的方法相比,使用较少的点信息(减少约60%)来代表局部静态环境。此外,运行时间(15ms)的性能表明,所提出的方法可用于实时局部静态环境感知。可以在https://github.com/ghm0819/cvr_lse上访问相应的代码。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译