协作深度加强学习(CDRL)算法,其中多个代理可以在无线网络上协调是一种有希望的方法,以便在复杂的动态环境中依赖实时决策的未来智能和自主系统。尽管如此,在实际情况下,CDRL由​​于代理的异质性及其学习任务,不同环境,学习时间限制以及无线网络的资源限制,因此CDRL面临着许多挑战。为了解决这些挑战,在本文中,提出了一种新颖的语义感知CDRL方法,以使一组异构未经训练的代理具有语义连接的DRL任务,以在资源受限无线蜂窝网络上有效地协作。为此,提出了一种新的异构联邦DRL(HFDRL)算法,以选择用于协作的语义相关DRL代理的最佳子集。然后,该方法将共同优化合作选定代理的训练损失和无线带宽分配,以便在其实时任务的时间限制内培训每个代理。仿真结果表明,与最先进的基线相比,所提出的算法的卓越性能。
translated by 谷歌翻译
语义通信将在实现下一代无线系统中实现目标面向服务的关键作用。然而,该域中的大多数现有技术仅限于特定应用程序(例如,文本或图像),并且它不能够实现所定向的通信,其中必须与语义一起考虑发送信息的有效性,以便执行a某些任务。在本文中,提出了一种综合语义通信框架,以实现面向目标的任务执行。为了捕获扬声器和侦听器之间的语义,使用信仰的概念来定义一个通用语言,以使扬声器向听众描述环境观察。然后,提出了优化问题以选择完美描述了观察的最小信念集,同时最小化任务执行时间和传输成本。建议将课程学习(CL)和强化学习(RL)结合的新型自上而下框架来解决这个问题。仿真结果表明,在训练期间,所提出的CL方法在收敛时间,任务执行时间和传输成本方面优于传统的RL。
translated by 谷歌翻译
通过具有资源约束设备的无线网络部署联合学习(FL)需要平衡精度,能量效率和精度之间。现有技术在FL上经常需要设备使用32位精度级别来培训深神经网络(DNN)以进行数据表示以提高精度。然而,由于DNN可能需要执行数百万运算,因此这些算法对于资源受限设备来说是不切实际的。因此,培训具有高精度水平的DNN,对FL的高能量成本引起。在本文中,提出了一种量化的FL框架,其表示在本地训练和上行链路传输中具有有限精度的有限精度的数据。这里,通过使用量化的神经网络(QNN)以固定精度格式量化的量化神经网络(QNN)来捕获有限的精度。在所考虑的流域中,每个设备列举其QNN并将量化的训练结果传输到基站。用于本地训练的能源模型和具有量化的传输经过严格导出。在确保收敛的同时,相对于精度的水平配制了能量最小化问题。为了解决问题,我们首先分析了流量收敛速度并使用了线路搜索方法。仿真结果表明,与标准FL模型相比,我们的FL框架可以将能耗降低至53%。结果在无线网络上的精度,能量和准确性之间的权衡之间还阐明了借调。
translated by 谷歌翻译
合作的感知在将车辆的感知范围扩展到超出其视线之外至关重要。然而,在有限的通信资源下交换原始感官数据是不可行的。为了实现有效的合作感知,车辆需要解决以下基本问题:需要共享哪些感官数据?,在哪个分辨率?,以及哪个车辆?为了回答这个问题,在本文中,提出了一种新颖的框架来允许加强学习(RL)基于车辆关联,资源块(RB)分配和通过利用基于四叉的点的协作感知消息(CPM)的内容选择云压缩机制。此外,引入了联合的RL方法,以便在跨车辆上加速训练过程。仿真结果表明,RL代理能够有效地学习车辆关联,RB分配和消息内容选择,同时在接收的感官信息方面最大化车辆的满足。结果还表明,与非联邦方法相比,联邦RL改善了培训过程,可以在与非联邦方法相同的时间内实现更好的政策。
translated by 谷歌翻译
现代深度神经网络必须展示最先进的准确性,同时表现出低延迟和能耗。因此,在生成新架构时,神经结构搜索(NAS)算法将这两个约束考虑在内。但是,诸如延迟的效率度量通常是依赖于需要NAS算法来测量或预测架构延迟的硬件。测量每个评估架构的延迟增加了NAS过程的大量时间。在这里,我们将微处理器提出了一个先验的延迟估计枫木,其不依赖于传输学习或域适应,而是通过在训练期间结合先前的硬件特征来推广到新硬件。枫木利用新的定量策略来通过测量相关的硬件性能度量来表征底层微处理器,产生细粒度和富有效应硬件描述符。此外,所提出的枫木从CPU和GPU之间的紧密耦合I / O以及它们在从CPU中测量GPU硬件的微处理器性能硬件计数器时预测GPU上的DNN延迟的依赖性。通过这种定量策略作为硬件描述符,Maple可以通过一些镜头适应策略概括到新硬件,其中少于3个样本,它具有超过最先进的方法的3%改进,需要多达10个样品。实验结果表明,随着最先进的方法,增加了几次喷射适应样品到10提高了精度12%。此外,据证明,与任何数量适应样品的相关基线相比,枫木呈现出8-10%的精度,平均相比。
translated by 谷歌翻译
已知预测的集合,而是比单独采取的个体预测更好地执行更好。但是,对于需要重型计算资源的任务,\ texit {例如}语义细分,创建需要单独培训的学习者的集合几乎没有易行。在这项工作中,我们建议利用集合方法提供的性能提升,以增强语义分割,同时避免了集合的传统训练成本。我们的自我集成框架利用了通过特征金字塔网络方法生产的多尺度功能来提供独立解码器,从而在单个模型中创建集合。类似于集合,最终预测是每个学习者所做的预测的聚合。与以前的作品相比,我们的模型可以训练结束,减轻了传统的繁琐多阶段培训的合奏。我们的自身融合框架优于当前最先进的基准数据集ADE20K,Pascal Context和Coco-Stuff-10K用于语义细分,并且在城市景观竞争。代码将在Github.com/walbouss/senformer上使用。
translated by 谷歌翻译
识别语音情绪的语言不可知论的方法仍然是一个不完整和具有挑战性的任务。在本文中,我们使用Bangla和英语语言来评估与语音中的情感是否与语言无关。这项研究分类了以下情绪:幸福,愤怒,中立,悲伤,厌恶和恐惧。我们雇用了三种情绪言论,其中前两组是由孟加拉和英语语言的本土孟加拉语扬声器开发的。第三个是多伦多情感演讲(苔丝),由加拿大母语的英语发言者开发。我们仔细选择了语言无关的韵律特征,采用了支持向量机(SVM)模型,并进行了三个实验来执行我们的主张。在第一个实验中,我们单独测量三种语音组的性能。接下来是第二种实验,我们通过组合语音集来记录分类率。最后,在第三个实验中,我们通过培训和测试不同语音集来测量识别率。虽然这项研究表明,言语情感认可(SER)大多是语言无关的,但在识别出在这两种语言中的厌恶和恐惧之类的情绪状态时存在一些差异。此外,我们的调查推断出非母语人员通过言语传达情绪,就像以其母语在母语中表达自己。
translated by 谷歌翻译
我们证明,与畴壁(DW)位置的大量随机变化的量化量(名义上是5态)突触的极低分辨率可以是节能的,并且与使用浮动精度相比,与类似尺寸的深度神经网络(DNN)相比具有相当高的测试精度。突触权重。具体地,电压控制的DW器件展示随机性的随机行为,与微磁性模拟严格,并且只能编码有限状态;但是,它们在训练和推论中都可以非常节能。我们表明,通过对学习算法实施合适的修改,我们可以解决随机行为以及减轻其低分辨率的影响,以实现高测试精度。在这项研究中,我们提出了原位和前地训练算法,基于Hubara等人提出的算法的修改。 [1]适用于突触权重的量化。我们使用2个,3和5状态DW设备作为Synapse培训Mnist DataSet上的几个5层DNN。对于原位训练,采用单独的高精度存储器单元来保护和累积重量梯度,然后被量化以编程低精密DW设备。此外,在训练期间使用尺寸的噪声公差余量来解决内部编程噪声。对于前训训练,首先基于所表征的DW设备模型和噪声公差余量进行前体DNN,其类似于原位培训。值得注意的是,对于原位推断,对设备的能量耗散装置仅是每次推断仅13页,因为在整个MNIST数据集上进行10个时期进行训练。
translated by 谷歌翻译
光谱方法是求解部分微分方程(PDE)的科学计算的武器的重要组成部分。然而,它们的适用性和有效性在很大程度上取决于用于扩展PDE溶液的基础函数的选择。过去十年已经看到,在提供复杂职能的有效陈述方面,深入学习的出现是强烈的竞争者。在目前的工作中,我们提出了一种用谱方法结合深神经网络来解决PDE的方法。特别是,我们使用称为深度操作系统网络(DeepOnet)的深度学习技术,以识别扩展PDE解决方案的候选功能。我们已经设计了一种方法,该方法使用DeepOnet提供的候选功能作为构建具有以下属性的一组功能的起点:i)它们构成基础,2)它们是正常的,3)它们是等级的,类似于傅里叶系列或正交多项式。我们利用了我们定制的基础函数的有利属性,以研究其近似能力,并使用它们来扩展线性和非线性时间依赖性PDE的解决方案。
translated by 谷歌翻译
人类活动识别(Har)是一个正在进行的研究主题。它具有医疗支持,体育,健身,社交网络,人机界面,高级护理,娱乐,监控以及列表的应用。传统上,电脑视觉方法用于Har,它具有许多问题,例如保密或隐私,环境因素的影响,流动性,更高的运行成本,闭塞等。最近出现了使用传感器,尤其是惯性传感器的新趋势。使用传感器数据作为传统计算机视觉算法的替代方案存在若干优点。在文献中记录了计算机视觉算法的许多局限,包括利用传感器数据的深度神经网络(DNN)和机器学习(ML)方法的研究。我们使用智能手机的惯性传感器数据检查并分析了人类活动识别的不同机器学习和深度学习方法。为了确定哪种方法最适合此应用。
translated by 谷歌翻译