自我监督的学习算法包括BERT和SIMCLR,在自然语言处理,计算机视觉和语音处理等领域中启用了重要的进步。然而,这些算法是特定于域的,这意味着必须为每个新设置开发新的自我监督的学习算法,包括Myriad Healthcare,Scientific和多模域。为了促进朝向域 - 无症方法的进展,我们介绍了DABS:一个用于自我监督学习的领域 - 不可知基准。为了在DAB上表现良好,在七种不同域名评估算法:自然图像,多通道传感器数据,英语文本,语音记录,多语言文本,胸部X射线和图像,具有文本描述。每个域都包含一个未标记的预先预订的未标记数据集;然后基于其在域中的一组标记任务上的下游性能来评分模型。我们还展示了E-Mix和Shed:两个基线域名 - 不可止结算法;它们相对适度的性能表明,在自我监督学习之前需要取得重大进展是任意域的开箱即用解决方案。基准数据集和基线算法的代码可在https://github.com/alextamkin/dabs上获得。
translated by 谷歌翻译
脱机强化学习 - 从一批数据中学习策略 - 是难以努力的:如果没有制造强烈的假设,它很容易构建实体算法失败的校长。在这项工作中,我们考虑了某些现实世界问题的财产,其中离线强化学习应该有效:行动仅对一部分产生有限的行动。我们正规化并介绍此动作影响规律(AIR)财产。我们进一步提出了一种算法,该算法假定和利用AIR属性,并在MDP满足空气时绑定输出策略的子优相。最后,我们展示了我们的算法在定期保留的两个模拟环境中跨越不同的数据收集策略占据了现有的离线强度学习算法。
translated by 谷歌翻译
目前有技术节点缩放,早期设计阶段的精确预测模型可以显着降低设计周期。特别是在逻辑合成期间,预测由于逻辑组合不当导致的细胞拥塞可以减少后续物理实现的负担。已经尝试使用图形神经网络(GNN)技术来解决逻辑合成阶段的拥塞预测。然而,它们需要信息性小区特征来实现合理的性能,因为GNN的核心概念构建在消息通过框架上,这在早期逻辑合成阶段将是不切实际的。为了解决这个限制,我们提出了一个框架,可以直接学习给定网表的嵌入式,以提高节点功能的质量。基于流行的随机播放的嵌入方法,如Node2VEC,LINE和DeadWalk遭受横绘对齐和普遍性的问题,以取消差价,效率低于性能和成本耗费的运行时。在我们的框架中,我们介绍了一种卓越的替代方案,可以获得可以使用矩阵分解方法概括在网表图中的节点嵌入。我们在子图水平上提出了一种高效的迷你批量培训方法,可以保证并行培训并满足大规模网手册的内存限制。我们呈现利用开源EDA工具的结果,如Dreamplace和OpenORAD框架上的各种公开的电路。通过将学习的嵌入在网手册的顶部与GNN结合,我们的方法可以提高预测性能,推广到新电路线,并且在训练中具有高效,潜在节省超过$ 90 \%运行时。
translated by 谷歌翻译
执行单个图像整体理解和3D重建是计算机视觉中的核心任务。本文介绍了从单个RGB图像的室内和室外场景执行整体图像分段,对象检测,实例分段,深度估计和对象实例3D重建。我们命名我们的系统Panoptic 3D解析,其中Panoptic Segsation(“填写”分割和“检测/分割”的“检测/分割”。我们设计了一个舞台明智的系统,其中不存在一整套注释。此外,我们介绍了一个端到端的管道,在合成数据集上培训,具有全套注释。我们在室内(3D-Flact)和户外(可可和城市)的场景上显示结果。我们提出的Panoptic 3D解析框架指向计算机愿景中有希望的方向。它可以应用于各种应用,包括自主驾驶,映射,机器人,设计,计算机图形学,机器人,人机互动和增强现实。
translated by 谷歌翻译
最近,刘和张研究了从压缩传感的角度研究了时间序列预测的相当具有挑战性的问题。他们提出了一个没有学习的方法,名为卷积核规范最小化(CNNM),并证明了CNNM可以完全从其观察到的部分恢复一系列系列的部分,只要该系列是卷积的低级。虽然令人印象深刻,但是每当系列远离季节性时可能不满足卷积的低秩条件,并且实际上是脆弱的趋势和动态的存在。本文试图通过将学习,正常的转换集成到CNNM中,以便将一系列渐开线结构转换为卷积低等级的常规信号的目的。我们证明,由于系列的变换是卷积低级的转换,所以,所产生的模型是基于学习的基于学习的CNNM(LBCNM),严格成功地识别了一个系列的未来部分。为了学习可能符合所需成功条件的适当转换,我们设计了一种基于主成分追求(PCP)的可解释方法。配备了这种学习方法和一些精心设计的数据论证技巧,LBCNM不仅可以处理时间序列的主要组成部分(包括趋势,季节性和动态),还可以利用其他一些预测方法提供的预测;这意味着LBCNNM可以用作模型组合的一般工具。从时间序列数据库(TSDL)和M4竞争(M4)的100,452个现实世界时间序列的大量实验证明了LBCNNM的卓越性能。
translated by 谷歌翻译
社交媒体帖子包含有关医疗条件和与健康相关行为的潜在有价值的信息。生物重建VII任务3专注于通过识别推文中的药物和膳食补充剂的提及来挖掘这些信息。我们通过精细调整多个BERT样式语言模型来执行此任务以执行令牌级分类,并将它们组合成集合以生成最终预测。我们最好的系统由五个Megatron-Bert-345M型号组成,在看不见的测试数据上实现了0.764的严格F1得分。
translated by 谷歌翻译
生物重建VII Track-2挑战包括命名实体识别,实体链接(或实体 - 归一化),主题索引任务 - 与实体和主题限制为这项挑战的化学品。命名实体识别是一个完善的问题,我们通过基于Bert的生物群体模型实现了我们的最佳性能。我们将基于BERT的方法扩展到实体链接任务。在预先预订Biobert的第二阶段,通过称为自对准预先训练(SAP)的度量学习损失策略,我们将基于其SAP-Biobert Word Embeddings之间的余弦相似性链接实体。尽管我们的命名实体识别实验取得了成功,但我们发现化学指数任务一般更具挑战性。除了传统的NER方法之外,我们还尝试使用基于新颖的文本或“提示”方法的命名实体识别和实体链接,该方法使用生成语言模型,例如T5和GPT。我们通过这种新方法实现了令人鼓舞的结果。
translated by 谷歌翻译
在Bircocrive VII的Track-1中,要求参与者识别药物/化学品和蛋白质之间的相互作用。提供每个药物/化学和蛋白质的内部名称实体注释,必须自动预测14个不同的相互作用中的一种。对于此关系提取任务,我们尝试两种基于BERT的句子分类方法,以及使用T5模型的更新文本到文本方法。我们发现基于BERT的模型一般表现更好,我们的生物综太基模型实现了所有指标的最高分,实现了0.74 F1得分。虽然我们的小说T5文本到文本方法没有表现出基于BERT的大多数模型,但它表现出在类似数据上培训的那些,呈现出有希望的结果,实现0.65 F1得分。我们认为,与关系提取的文本文本方法有一些竞争优势,并且有很多研究进步的空间。
translated by 谷歌翻译
由于稀疏和嘈杂的测量,不完整的观察和大转化,3D对象的点云注册是非常具有挑战性的。在这项工作中,我们提出了匹配共识网络(GMCNet)的图表匹配,该网络估计了ultrange 1偏向部分点云注册(PPR)的姿势不变的对应关系。为了编码强大的点描述符,1)我们首先全面调查各种几何特征的变换 - 鲁棒性和远征性。 2)然后,我们采用新颖的转换 - 强大的点变换器(TPT)模块,以自适应地聚合有关结构关系的本地特征,其利用手工旋转 - 不变($ RI $)功能和噪声弹性空间坐标。 3)基于分层图网络网络和图形建模的协同作用,我们提出了编码由I)从$ RI $特征中汲取的一项机会学习的强大描述符的分层图形建模(HGM)架构;并且ii)通过我们的TPT模块以不同尺度的相邻点关系编码的多个平滑术语。此外,我们用虚拟扫描构建一个具有挑战性的PPR数据集(MVP-RG)。广泛的实验表明,GMCNet优于PPR以前的最先进方法。值得注意的是,GMCNET编码每个点云的点描述符,而不使用CrossContexual信息,或接地真理对应进行培训。我们的代码和数据集将在https://github.com/paul007pl/gmcnet上获得。
translated by 谷歌翻译
神经辐射场(NERF)在代表3D场景和合成新颖视图中示出了很大的潜力,但是在推理阶段的NERF的计算开销仍然很重。为了减轻负担,我们进入了NERF的粗细分,分层采样过程,并指出粗阶段可以被我们命名神经样本场的轻量级模块代替。所提出的示例场地图光线进入样本分布,可以将其转换为点坐标并进料到radiance字段以进行体积渲染。整体框架被命名为Neusample。我们在现实合成360 $ ^ {\ circ} $和真正的前瞻性,两个流行的3D场景集上进行实验,并表明Neusample在享受更快推理速度时比NERF实现更好的渲染质量。Neusample进一步压缩,以提出的样品场提取方法朝向质量和速度之间的更好的权衡。
translated by 谷歌翻译