本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
图像生物标准化倡议(IBSI)旨在通过标准化从图像中提取图像生物标志物(特征)的计算过程来提高射致研究的再现性。我们之前建立了169个常用特征的参考值,创建了标准的射频图像处理方案,并开发了用于垄断研究的报告指南。但是,若干方面没有标准化。在这里,我们提出了在射频中使用卷积图像过滤器的参考手册的初步版本。滤波器,例如高斯滤波器的小波或拉普拉斯,在强调特定图像特征(如边缘和Blob)中发挥重要组成部分。已发现从过滤滤波器响应图派生的功能可重复差。此参考手册构成了持续工作的基础,用于标准化卷积滤波器中的覆盖物中的持续工作,并在这项工作进行时更新。
translated by 谷歌翻译
从自然语言中提取正式知识(本体论)是一个挑战,可以从语义层面上从(半)正式语言表征中受益。我们建议通过在RDF之上实施通用网络语言(UNL)规范来实现这样的代表。因此,任何语言中的陈述的含义都会被声称为RDF-UNL图形,构成自然语言与正式知识之间的中间地面。特别是,我们表明RDF-UNL图表可以使用通用Shacl规则支持内容提取,并且提取的事实上的推理允许检测原始文本中的不一致。这种方法是在UNSELER项目中试验,该项目旨在从系统要求/规格中提取本体论,以检查它们是一致的,完整和明确的。我们的RDF-UNL实施和本文的工作示例的所有代码在HTTPS://gitlab.tetras-libre.fr/unl/rdf-unl上公开可用于Cecill-B许可证下
translated by 谷歌翻译
这项工作系统地调查了深度图像去噪者(DIDS)的对抗性稳健性,即,可以从嘈杂的观察中恢复地面真理的噪音,因对抗性扰动而变化。首先,为了评估DIDS的稳健性,我们提出了一种新的逆势攻击,即观察到的零平均攻击({\ SC obsatk}),对给定嘈杂的图像来制作对抗零均匀扰动。我们发现现有的确实容易受到{\ SC Obsatk}产生的对抗噪声。其次,为了强化犯罪,我们提出了一种对抗性培训策略,混合对抗训练({\ SC帽}),共同列车与对抗性和非对抗性嘈杂的数据做出,以确保重建质量很高,并且围绕非对抗性数据是局部光滑的。所得到的确实可以有效去除各种类型的合成和对抗性噪声。我们还发现,DIDS的稳健性使其在看不见的真实噪音上的概括能力。实际上,{\ SC帽子} -Tromed DID可以从真实世界的噪音中恢复高质量的清洁图像,即使没有真正的嘈杂数据训练。基准数据集的广泛实验,包括SET68,PolyU和SIDD,证实了{\ SC Obsatk}和{\ SC帽}的有效性。
translated by 谷歌翻译
混合是一种数据相关的正则化技术,其包括线性内插输入样本和相关输出。它已被证明在用于培训标准机器学习数据集时提高准确性。然而,作者已经指出,混合可以在增强训练集中产生分配的虚拟样本,甚至是矛盾,可能导致对抗效应。在本文中,我们介绍了当地混合,其中在计算损失时加权远处输入样本。在约束的环境中,我们证明了本地混合可以在偏差和方差之间产生权衡,极端情况降低了香草培训和古典混合。使用标准化的计算机视觉基准测试,我们还表明本地混合可以提高测试精度。
translated by 谷歌翻译
传输学习方法旨在使用在丰富的源域上掠过的模型来提高数据稀缺目标域中的性能。一种成本效益的策略,线性探测涉及冻结源模型并培训目标域的新分类头。此策略的表现优于更昂贵但最先进的方法 - 将源模型的所有参数微调到目标域 - 可能是因为微调允许模型从中间层利用有用的信息否则被稍后的净化层丢弃。我们探讨了这些中间层可能直接剥削的假设。我们提出了一种方法,头对脚趾探测(Head2ToE),其从源模型的所有层中选择特征,以训练目标域的分类头。在VTAB-1K的评估中,Head2Toe与平均微调获得的性能相匹配,同时减少培训和储存成本一百倍或更多,但批判性地,用于分配转移,头部2ToE优于微调。
translated by 谷歌翻译
眼科成像利用不同的成像系统,例如彩色眼底,红外线,荧光素血管造影,光学相干断层扫描(OCT)或OCT血管造影。通常分析具有不同模态或采集时间的多种图像用于诊断视网膜疾病。通过多模态登记自动对准图像中的血管结构可以支持其工作中的眼科医生。我们的方法使用卷积神经网络在多模态视网膜图像中提取血管结构的特征。我们使用分类和跨模板描述符丢失功能共同列车在小块上进行小贴检测和描述网络,并将网络应用于测试阶段的完整图像尺寸。我们的方法与竞争方法相比,我们和公共多模态数据集上的最佳注册性能。
translated by 谷歌翻译
TRISTRUCCUCTIONATIOPIC(TRISO)涂层颗粒燃料是强大的核燃料,并确定其可靠性对于先进的核技术的成功至关重要。然而,Triso失效概率很小,相关的计算模型很昂贵。我们使用耦合的主动学习,多尺度建模和子集模拟来估计使用几个1D和2D模型的Triso燃料的故障概率。通过多尺度建模,我们用来自两个低保真(LF)模型的信息融合,取代了昂贵的高保真(HF)模型评估。对于1D TRISO模型,我们考虑了三种多倍性建模策略:仅克里格,Kriging LF预测加克里格校正,深神经网络(DNN)LF预测加克里格校正。虽然这些多尺度建模策略的结果令人满意地比较了从两个LF模型中使用信息融合的策略,但是通常常常称为HF模型。接下来,对于2D Triso模型,我们考虑了两个多倍性建模策略:DNN LF预测加克里格校正(数据驱动)和1D Triso LF预测加克里格校正(基于物理学)。正如所预期的那样,基于物理的策略一直需要对HF模型的最少的呼叫。然而,由于DNN预测是瞬时的,数据驱动的策略具有较低的整体模拟时间,并且1D Triso模型需要不可忽略的模拟时间。
translated by 谷歌翻译
在无模型的深度加强学习(RL)算法中,利用嘈杂的值估计监督政策评估和优化对样品效率有害。由于这种噪声是异源的,因此可以在优化过程中使用基于不确定性的权重来缓解其效果。以前的方法依赖于采样的合奏,这不会捕获不确定性的所有方面。我们对在RL的嘈杂监管中提供了对不确定性的不确定性来源的系统分析,并引入了诸如将概率集合和批处理逆差加权组合的贝叶斯框架的逆差异RL。我们提出了一种方法,其中两个互补的不确定性估计方法占Q值和环境随机性,以更好地减轻嘈杂监督的负面影响。我们的结果表明,对离散和连续控制任务的采样效率方面显着改进。
translated by 谷歌翻译
深度学习方法在图像染色中优于传统方法。为了生成上下文纹理,研究人员仍在努力改进现有方法,并提出可以提取,传播和重建类似于地面真实区域的特征的模型。此外,更深层的缺乏高质量的特征传递机制有助于对所产生的染色区域有助于持久的像差。为了解决这些限制,我们提出了V-Linknet跨空间学习策略网络。为了改善语境化功能的学习,我们设计了一种使用两个编码器的损失模型。此外,我们提出了递归残留过渡层(RSTL)。 RSTL提取高电平语义信息并将其传播为下层。最后,我们将在与不同面具的同一面孔和不同面部面上的相同面上进行了比较的措施。为了提高图像修复再现性,我们提出了一种标准协议来克服各种掩模和图像的偏差。我们使用实验方法调查V-LinkNet组件。当使用标准协议时,在Celeba-HQ上评估时,我们的结果超越了现有技术。此外,我们的模型可以在Paris Street View上评估时概括良好,以及具有标准协议的Parume2数据集。
translated by 谷歌翻译