基础培训数据的质量对于建立具有更广泛的Generalizabilty的表演机器学习模型非常重要。但是,当前机器学习(ML)工具缺乏简化的流程,用于提高数据质量。因此,获取数据质量见解并迭代地修剪以获取最大代表下游使用情况的数据集的错误仍然是Ad-hoc手动过程。我们的工作解决了这种数据工具差距,需要纯粹通过以数据为中心的技术构建改进的ML工作流程。更具体地说,我们介绍了(1)在数据集中找到嘈杂或错误标记的样本的系统框架,(2)识别最具信息丰富的样本,当包含在训练中时,该样本将提供最大的模型性能提升。我们展示了我们在公共场合的框架以及两家财富500强公司的私营企业数据集的效果,并确信这项工作将形成ML团队执行更智能的数据发现和修剪的基础。
translated by 谷歌翻译