Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
通过各种物体学习各种灵巧的操纵行为仍然是一个开放的巨大挑战。虽然政策学习方法为攻击此问题提供了强大的途径,但它们需要大量的每任务工程和算法调整。本文试图通过开发预先保证的灵巧操纵(PGDM)框架来逃避这些约束,从而在没有任何特定于任务的推理或超级参数调整的情况下会产生各种灵活的操纵行为。 PGD​​M的核心是一种众所周知的机器人构建体,即pre grasps(即用于对象相互作用的手工置序)。这种简单的原始性足以诱导有效的探索策略来获取复杂的灵巧操纵行为。为了详尽地验证这些主张,我们介绍了TCDM,这是根据多个对象和灵巧的操纵器定义的50个不同操纵任务的基准。 TCDM的任务是使用来自各种来源(动画师,人类行为等)的示例对象轨迹自动定义的,而无需任何执行任务工程和/或监督。我们的实验验证了PGDM的探索策略,该策略是由令人惊讶的简单成分(单个预抓姿势)引起的,与先前方法的性能相匹配,这些方法需要昂贵的每任意功能/奖励工程,专家监督和高参数调整。有关动画可视化,训练有素的策略和项目代码,请参阅:https://pregrasps.github.io/
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
The rise in data has led to the need for dimension reduction techniques, especially in the area of non-scalar variables, including time series, natural language processing, and computer vision. In this paper, we specifically investigate dimension reduction for time series through functional data analysis. Current methods for dimension reduction in functional data are functional principal component analysis and functional autoencoders, which are limited to linear mappings or scalar representations for the time series, which is inefficient. In real data applications, the nature of the data is much more complex. We propose a non-linear function-on-function approach, which consists of a functional encoder and a functional decoder, that uses continuous hidden layers consisting of continuous neurons to learn the structure inherent in functional data, which addresses the aforementioned concerns in the existing approaches. Our approach gives a low dimension latent representation by reducing the number of functional features as well as the timepoints at which the functions are observed. The effectiveness of the proposed model is demonstrated through multiple simulations and real data examples.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
The ability for an agent to continuously learn new skills without catastrophically forgetting existing knowledge is of critical importance for the development of generally intelligent agents. Most methods devised to address this problem depend heavily on well-defined task boundaries, and thus depend on human supervision. Our task-agnostic method, Self-Activating Neural Ensembles (SANE), uses a modular architecture designed to avoid catastrophic forgetting without making any such assumptions. At the beginning of each trajectory, a module in the SANE ensemble is activated to determine the agent's next policy. During training, new modules are created as needed and only activated modules are updated to ensure that unused modules remain unchanged. This system enables our method to retain and leverage old skills, while growing and learning new ones. We demonstrate our approach on visually rich procedurally generated environments.
translated by 谷歌翻译
We present a novel hybrid learning method, HyLEAR, for solving the collision-free navigation problem for self-driving cars in POMDPs. HyLEAR leverages interposed learning to embed knowledge of a hybrid planner into a deep reinforcement learner to faster determine safe and comfortable driving policies. In particular, the hybrid planner combines pedestrian path prediction and risk-aware path planning with driving-behavior rule-based reasoning such that the driving policies also take into account, whenever possible, the ride comfort and a given set of driving-behavior rules. Our experimental performance analysis over the CARLA-CTS1 benchmark of critical traffic scenarios revealed that HyLEAR can significantly outperform the selected baselines in terms of safety and ride comfort.
translated by 谷歌翻译