医疗AI通过支持基于证据的医学实践,个性化患者治疗,降低成本以及改善提供者和患者体验,推进医疗保健的巨大潜力。我们认为解锁此潜力需要一种系统的方法来衡量在大规模异构数据上的医疗AI模型的性能。为了满足这种需求,我们正在建立Medperf,这是一个开放的框架,用于在医疗领域的基准测试机器学习。 Medperf将使联合评估能够将模型安全地分配给不同的评估设施,从而赋予医疗组织在高效和人类监督过程中评估和验证AI模型的性能,同时优先考虑隐私。我们描述了当前的挑战医疗保健和AI社区面临,需要开放平台,Medperf的设计理念,其目前的实施状态和我们的路线图。我们呼吁研究人员和组织加入我们创建Medperf开放基准平台。
translated by 谷歌翻译
在人工智能(AI),机器学习(ML)以及更具体地说,深度学习(DL)的核心已经取得了巨大的成功。但是,由于缺少培训ML或DL模型中缺少类是看不见的,看不见的类标签预测的探索程度要小得多。在这项工作中,我们提出了一个模糊的推理系统,通过与基于曲率的特征选择(CFS)方法结合使用TSK+模糊推理引擎来应对这一挑战。通过预测物联网(IoT)领域内的网络设备的定位标签,已经评估了我们系统的实际可行性。竞争性预测性能证实了我们系统的效率和功效,尤其是在模型训练阶段看不见的大量连续类标签时。
translated by 谷歌翻译
基于学习的控制器,例如神经网络(NN)控制器,可以表现出很高的经验性能,但缺乏正式的安全保证。为了解决此问题,已将控制屏障功能(CBF)应用于安全过滤器,以监视和修改基于学习的控制器的输出,以确保闭环系统的安全性。但是,这种修饰可能是近视的,具有不可预测的长期影响。在这项工作中,我们提出了一个安全的NN控制器,该控制器采用了基于CBF的可区分安全层,并研究了基于学习的控制中安全的NN控制器的性能。具体而言,比较了两个控制器的公式:一个是基于投影的,另一个依赖于我们提出的集合理论参数化。两种方法都证明了在数值实验中使用CBF作为单独的安全滤波器的改进的闭环性能。
translated by 谷歌翻译
在本文中,我们设计了一个基于信息的多机器人来源,以寻求算法,其中一组移动传感器仅使用基于局部范围的测量值就本地化并移动靠近单个源。在算法中,移动传感器执行源标识/本地化以估计源位置;同时,他们移至新位置,以最大程度地提高有关传感器测量中包含的源的Fisher信息。在这样做的过程中,它们改善了源位置估计,并更靠近源。与传统的攀登算法相比,我们的算法在收敛速度方面具有优越性,在测量模型和信息指标的选择中是灵活的,并且对测量模型误差非常强大。此外,我们提供了算法的完全分布式版本,每个传感器都决定自己的动作,并且仅通过稀疏的通信网络与邻居共享信息。我们进行密集的仿真实验,以测试带有光传感器的小型地面车辆上的大规模系统和物理实验的算法,这表明在寻求光源方面取得了成功。
translated by 谷歌翻译
先前的工作表明,深-RL可以应用于无地图导航,包括混合无人驾驶空中水下车辆(Huauvs)的中等过渡。本文介绍了基于最先进的演员批评算法的新方法,以解决Huauv的导航和中型过渡问题。我们表明,具有复发性神经网络的双重评论家Deep-RL可以使用仅范围数据和相对定位来改善Huauvs的导航性能。我们的深-RL方法通过通过不同的模拟场景对学习的扎实概括,实现了更好的导航和过渡能力,表现优于先前的方法。
translated by 谷歌翻译
深钢筋学习中的确定性和随机技术已成为改善运动控制和各种机器人的决策任务的有前途的解决方案。先前的工作表明,这些深-RL算法通常可以应用于一般的移动机器人的无MAP导航。但是,他们倾向于使用简单的传感策略,因为已经证明它们在高维状态空间(例如基于图像的传感的空间)方面的性能不佳。本文在执行移动机器人无地图导航的任务时,对两种深-RL技术 - 深确定性政策梯度(DDPG)和软参与者(SAC)进行了比较分析。我们的目标是通过展示神经网络体系结构如何影响学习本身的贡献,并根据每种方法的航空移动机器人导航的时间和距离提出定量结果。总体而言,我们对六个不同体系结构的分析强调了随机方法(SAC)更好地使用更深的体系结构,而恰恰相反发生在确定性方法(DDPG)中。
translated by 谷歌翻译
近年来,深度学习已成为遥感科学家最有效的计算机视觉工具之一。但是,遥感数据集缺乏培训标签,这意味着科学家需要解决域适应性问题,以缩小卫星图像数据集之间的差异。结果,随后训练的图像分割模型可以更好地概括并使用现有的一组标签,而不需要新的标签。这项工作提出了一个无监督的域适应模型,该模型可在样式转移阶段保留图像的语义一致性和每个像素质量。本文的主要贡献是提出了SEMI2I模型的改进体系结构,该模型显着提高了所提出的模型的性能,并使其与最先进的Cycada模型具有竞争力。第二个贡献是在遥感多波段数据集(例如Worldview-2和Spot-6)上测试Cycada模型。提出的模型可在样式传递阶段保留图像的语义一致性和每个像素质量。因此,与SEMI2I模型相比,经过适应图像的训练的语义分割模型显示出可观的性能增长,并达到与最先进的Cycada模型相似的结果。所提出方法的未来开发可能包括生态领域转移,{\ em先验}对数据分布的质量评估,或探索域自适应模型的内部体系结构。
translated by 谷歌翻译
我们考虑在非负轨道中包含的半格式集中的多项式优化问题(POP)(紧凑型集合上的每个POP都可以通过对Origin的简单翻译来以这种格式放置)。通过将每个变量平行,可以将这样的POP转换为等效的POP。使用偶数对称性和因子宽度的概念,我们根据Dickinson-Povh提出了基于P \'Olya的Potitivstellensatz的扩展,提出了半决赛弛豫的层次结构。作为其显着特征和关键特征,可以任意选择每个结果的半芬特弛豫的最大矩阵大小,此外,我们证明了新层次结构返回的值的序列收敛到原始POP的最佳值,以$ o的速率$ o。 (\ varepsilon^{ - c})$如果半gebraic集具有非空内饰。当应用于(i)多层神经网络的鲁棒性认证和(ii)计算积极的最大奇异值时,我们的方法基于p \'olya的Potitivstellensatz提供了更好的界限,并且比标准瞬间层次结构更快地运行了几百倍。
translated by 谷歌翻译
当测试数据与培训数据不同时,机器学习模型很容易失败,这种情况通常在称为分销转移的真实应用程序中遇到。尽管仍然有效,但培训时间知识的效率就降低了,需要进行测试时间适应以保持高性能。以下方法假设批处理层并使用其统计数据进行适应,我们提出了使用主成分分析(TTAWPCA)的测试时间适应,该测试时间假定拟合的PCA并在测试时间适应基于光谱过滤器,基于奇异的滤波器。 PCA可用于腐败的鲁棒性。 TTAWPCA结合了三个组件:使用主成分分析(PCA)分解给定层的输出,并通过其单数值的惩罚过滤,并用PCA逆变换重建。与当前方法相比,这种通用增强功能增加的参数少。在CIFAR-10-C和CIFAR-100-C上进行的实验证明了使用2000参数的唯一滤波器的有效性和限制。
translated by 谷歌翻译
晶格路径是在离散/网格图中有效导航的功能实体。本文提出了一种新方案,以最大的效率生成无碰撞的晶格路径,该方案利用双界有序的树木对生根的树木产生了最大的效率,从而使一维搜索问题呈现。我们使用十个最先进和相关性质启发的群体启发式的计算研究在带有凸面和非凸线几何的障碍物的导航方案中显示出可行性和效率在呈现无碰撞的晶格路径方面。我们认为,我们的计划可能会发现在离散地图中计划和组合优化的快速算法中的用途。
translated by 谷歌翻译