知识图中的节点是一个重要任务,例如,预测缺失类型的实体,预测哪些分子导致癌症,或预测哪种药物是有前途的治疗候选者。虽然黑匣子型号经常实现高预测性能,但它们只是hoc后和本地可解释的,并且不允许学习模型轻松丰富域知识。为此,已经提出了学习描述了来自正和否定示例的逻辑概念。然而,学习这种概念通常需要很长时间,最先进的方法为文字数据值提供有限的支持,尽管它们对于许多应用是至关重要的。在本文中,我们提出了Evolearner - 学习ALCQ(D)的进化方法,它是与合格基数限制(Q)和数据属性配对的补充(ALC)的定语语言和数据属性(D)。我们为初始群体贡献了一种新颖的初始化方法:从正示例开始(知识图中的节点),我们执行偏见随机散步并将它们转换为描述逻辑概念。此外,我们通过在决定分割数据的位置时,通过最大化信息增益来提高数据属性的支持。我们表明,我们的方法在结构化机器学习的基准框架SML - 台阶上显着优于现有技术。我们的消融研究证实,这是由于我们的新颖初始化方法和对数据属性的支持。
translated by 谷歌翻译
GAN的进展使高分辨率的感性质量形象产生了产生。 stylegans允许通过数学操作对W/W+空间中的潜在样式向量进行数学操作进行引人入胜的属性修改,从而有效调节生成器的丰富层次结构表示。最近,此类操作已被推广到原始StyleGan纸中的属性交换之外,以包括插值。尽管StyleGans有许多重大改进,但仍被认为会产生不自然的图像。生成的图像的质量基于两个假设。 (a)生成器学到的层次表示的丰富性,以及(b)样式空间的线性和平滑度。在这项工作中,我们提出了一个层次的语义正常化程序(HSR),该层次正常化程序将生成器学到的层次表示与大量数据学到的相应的强大功能保持一致。 HSR不仅可以改善发电机的表示,还可以改善潜在风格空间的线性和平滑度,从而导致产生更自然的样式编辑的图像。为了证明线性改善,我们提出了一种新型的度量 - 属性线性评分(ALS)。通过改善感知路径长度(PPL)度量的改善,在不同的标准数据集中平均16.19%的不自然图像的生成显着降低,同时改善了属性编辑任务中属性变化的线性变化。
translated by 谷歌翻译
学习证明(POL)建议模型所有者使用机器学习培训检查站,以建立已经花费了必要的培训计算的证明。 POL FIREGO加密方法和贸易严格的安全性的作者通过适用于随机梯度下降和适应性变体,可扩展到深度学习。缺乏正式分析使攻击者可能能够为他们没有训练的模型提供证据。我们对为什么不能正式(DIS)正式分析POL协议可抵抗欺骗对手。为此,我们在POL中解开了证明验证的两个角色:(a)有效确定证明是否是有效的梯度下降轨迹,以及(b)确定优先级,使在培训完成后制作证明(即。 ,欺骗)。我们表明,有效的验证会导致接受合法证明和拒绝无效的证据之间的权衡,因为深度学习必然涉及噪音。没有针对这种噪声如何影响训练的精确分析模型,我们无法正式保证POL验证算法是否强大。然后,我们证明,建立优先级也可以鲁棒化地减少到学习理论中的一个开放问题:欺骗Pol Pol hoc hoc训练类似于在非凸X学习中找到具有相同终点的不同轨迹。但是,我们不严格地知道对最终模型权重的先验知识是否有助于发现此类轨迹。我们得出的结论是,在解决上述开放问题之前,可能需要更严重地依靠密码学来制定新的POL协议,并提供正式的鲁棒性保证。特别是,这将有助于建立优先级。作为我们分析的见解的副产品,我们还展示了对POL的两次新攻击。
translated by 谷歌翻译
无监督的域适应性(DA)中的主要挑战是减轻源域和目标域之间的域移动。先前的DA工作表明,可以使用借口任务来通过学习域不变表示来减轻此域的转移。但是,实际上,我们发现大多数现有的借口任务对其他已建立的技术无效。因此,我们从理论上分析了如何以及何时可以利用子公司借口任务来协助给定DA问题的目标任务并制定客观的子公司任务适用性标准。基于此标准,我们设计了一个新颖的贴纸干预过程和铸造贴纸分类的过程,作为监督的子公司DA问题,该问题与目标任务无监督的DA同时发生。我们的方法不仅改善了目标任务适应性能,而且还促进了面向隐私的无源DA,即没有并发源目标访问。标准Office-31,Office-Home,Domainnet和Visda基准的实验证明了我们对单源和多源无源DA的优势。我们的方法还补充了现有的无源作品,从而实现了领先的绩效。
translated by 谷歌翻译
水印是保护创作者对数字图像,视频和音频的权利的常用策略。最近,水印方法已扩展到深度学习模型 - 原则上,当对手试图复制该模型时,应保留水印。但是,实际上,智能对手通常可以去除水印。几篇论文提出了水印方法,这些方法声称对不同类型的拆除攻击具有耐药性,但是在面对新的或更好的对手时,这些新技术通常会失败。在本文中,我们提出了一种可认证的水印方法。使用Chiang等人提出的随机平滑技术,我们表明我们的水印是不明显的,除非模型参数的更改超过一定的L2阈值。除了获得认证外,与以前的水印方法相比,我们的水印在经验上也更强。我们的实验可以在https://github.com/arpitbansal297/certified_watermarks上复制。
translated by 谷歌翻译
我们对两个单目标和两个多目标的全局全局优化算法进行了全面的全局灵敏度分析,作为算法配置问题。也就是说,我们研究了超参数对算法的直接效果和与其他超参数的效果的影响的影响质量。使用三种敏感性分析方法Morris LHS,Morris和Sobol,可以系统地分析协方差矩阵适应进化策略,差异进化,非主导的遗传算法III和多目标进化算法的可调型矩阵适应性进化策略,基于框架的分解,基于框架揭示,基于框架的遗传算法,超参数对抽样方法和性能指标的行为。也就是说,它回答了等问题,例如什么超参数会影响模式,它们的互动方式,相互作用的互动程度以及其直接影响程度。因此,超参数的排名表明它们的调整顺序,影响模式揭示了算法的稳定性。
translated by 谷歌翻译
通过手动创建或使用3D扫描工具来创建高质量的铰接3D动物3D模型。因此,从2D图像重建铰接的3D对象的技术至关重要且非常有用。在这项工作中,我们提出了一个实用问题设置,以估算只有几个(10-30)特定动物物种(例如马)的野外图像(Horse)的3D姿势和形状。与依赖于预定义模板形状的现有作品相反,我们不假设任何形式的2D或3D地面真相注释,也不利用任何多视图或时间信息。此外,每个输入图像合奏都可以包含具有不同姿势,背景,照明和纹理的动物实例。我们的主要见解是,与整体动物相比,3D零件的形状要简单得多,并且它们是强大的W.R.T.动物姿势关节。遵循这些见解,我们提出了Lassie,这是一个新颖的优化框架,以最少的用户干预以自我监督的方式发现3D部分。 Lassie背后的关键推动力是使用自我篇幅的深度功能实现2D-3D零件的一致性。与先前的艺术相比,关于Pascal-Part和自我收集的野生动物数据集的实验表明,3D重建以及2D和3D部分的发现都更好。项目页面:chhankyo.github.io/lassie/
translated by 谷歌翻译
基于骨架的识别系统正在获得流行,并在骨骼中关注点或关节的机器学习模型已被证明在机器人技术等许多领域具有计算有效和应用。很容易跟踪点,从而保存空间和时间信息,这在抽象所需信息中起着重要作用,分类成为一项容易的任务。在本文中,我们旨在研究这些要点,但使用云机制,在该机制中我们将云定义为点的集合。但是,当我们添加时间信息时,可能不可能检索每个帧中一个点的坐标,而不是专注于单个点,我们可以使用k-neighbors来检索所讨论的观点的状态。我们的重点是使用重量共享收集此类信息,但请确保当我们尝试从邻居那里检索信息时,我们不会随身携带噪音。 LSTM具有长期建模功能,并且可以携带时间和空间信息。在本文中,我们试图总结基于图的手势识别方法。
translated by 谷歌翻译
与单个决策树相比,Tree Ensemble(TE)模型(例如,增强的树木和随机森林)通常提供更高的预测性能。但是,由于人类难以理解其决策逻辑,因此TE模型通常缺乏透明度和可解释性。本文提出了一种新颖的方法,可以将经过训练的二进制分类任务的TE转换为规则列表(RL),该规则列表(RL)等同于TE,对于人类来说是可理解的。该RL捕获了TE决策的所有必要条件。基准数据集上的实验表明,与最先进的方法相比,(i)TE2RULES生成的RL的预测相对于原始TE具有很高的保真度,(ii)TE2RULES的RL具有高的解释性,由高可解释性衡量。决策规则的数量和长度,(iii)TE2RULES算法的运行时间可以大大减少,以稍低的保真度,(iv)RL是最新的替代品的快速替代 - 基于ART规则的实例级结果解释技术。
translated by 谷歌翻译
对象检测是自动驾驶中的一个全面研究的问题。但是,在鱼眼相机的情况下,它的探索相对较少。强烈的径向失真破坏了卷积神经网络的翻译不变性电感偏置。因此,我们提出了自动驾驶的木观鱼眼检测挑战,这是CVPR 2022年全向计算机视觉(OMNICV)的一部分。这是针对鱼眼相机对象检测的首批比赛之一。我们鼓励参与者设计在没有纠正的情况下对鱼眼图像的本地工作的模型。我们使用Codalab根据公开可用的Fisheye数据集主持竞争。在本文中,我们提供了有关竞争的详细分析,该分析吸引了120个全球团队的参与和1492份提交的参与。我们简要讨论获胜方法的细节,并分析其定性和定量结果。
translated by 谷歌翻译