机械通气是ICU中最广泛使用的疗法中最广泛的疗法之一。然而,尽管在麻醉与科迪德相关的终身支持中具有广泛的应用,但仍有许多有害挑战。我们将这些视为控制问题:呼吸机必须根据规定的气道压力轨迹进出患者的肺部。基于PID方法的行业标准控制器既不是最佳的也不是强大的。我们的数据驱动方法学习通过在从呼吸机收集的数据上培训的模拟器本身进行培训来控制侵入式呼吸机。该方法优于流行的加固学习算法,甚至比PID更精确且强大地控制物理呼吸机。这些结果强调了有效的数据驱动方法可以用于侵入性通风,并表明更通用的通风形式(例如,无侵入性,适应性)也可能是可享受的。
translated by 谷歌翻译
Biological cortical networks are potentially fully recurrent networks without any distinct output layer, where recognition may instead rely on the distribution of activity across its neurons. Because such biological networks can have rich dynamics, they are well-designed to cope with dynamical interactions of the types that occur in nature, while traditional machine learning networks may struggle to make sense of such data. Here we connected a simple model neuronal network (based on the 'linear summation neuron model' featuring biologically realistic dynamics (LSM), consisting of 10 of excitatory and 10 inhibitory neurons, randomly connected) to a robot finger with multiple types of force sensors when interacting with materials of different levels of compliance. Scope: to explore the performance of the network on classification accuracy. Therefore, we compared the performance of the network output with principal component analysis of statistical features of the sensory data as well as its mechanical properties. Remarkably, even though the LSM was a very small and untrained network, and merely designed to provide rich internal network dynamics while the neuron model itself was highly simplified, we found that the LSM outperformed these other statistical approaches in terms of accuracy.
translated by 谷歌翻译
随着人工智能的兴起,算法已经变得更好地从培训数据中学习基本模式,包括基于性别,种族等基于性别的社会偏见。部署此类算法对招聘,医疗保健,执法等领域的部署已经提高了严重的领域。对机器学习算法中的公平,问责制,信任和解释性的关注。为了减轻这个问题,我们提出了D-Bias,这是一种视觉交互式工具,它体现了人类在循环AI方法,以审核和减轻表格数据集的社交偏见。它使用图形因果模型来表示数据集中不同特征之间的因果关系,并作为注入域知识的媒介。用户可以通过识别因果网络中的不公平因果关系并使用一系列公平指标来检测对群体(例如女性或亚组)的偏见。此后,用户可以通过在不公平的因果边缘作用来减轻偏见。对于每种相互作用,例如弱化/删除有偏见的因果边缘,系统使用一种新方法来模拟基于当前因果模型的新(cla依)数据集。用户可以在视觉上评估其相互作用对不同公平指标,公用事业指标,数据失真和基础数据分布的影响。一旦满足,他们就可以下载依据的数据集并将其用于任何下游应用程序以进行更公正的预测。我们通过对3个数据集进行实验以及一项正式的用户研究来评估D偏差。我们发现,与不同公平指标的基线偏差方法相比,D偏差有助于显着降低偏差,同时几乎没有数据失真和效用较小的损失。此外,我们基于人类的方法极大地超过了关于信任,解释性和问责制的自动方法。
translated by 谷歌翻译
COVID-19大流行揭示了数字制造对实现在线学习的重要性,这仍然是机器人课程的挑战。我们介绍了一种教学方法,该方法使学生可以远程参与涉及机器人设计和制造的动手机器人课程。我们的方法采用具有柔性丝的3D打印技术来创新软机器人。机器人是由柔性而不是刚性材料制成的。学生使用CAD软件设计灵活的机器人组件,例如执行器,传感器和控制器,将其设计上传到远程3D打印站,使用网络摄像头监视打印台,然后用实验室工作人员检查组件,然后邮寄用于测试和组装。在课程结束时,学生将通过几种设计进行迭代,并创建流体驱动的软机器人。我们的远程教学方法使教育工作者能够利用3D打印资源来教软机器人技术并培养学生之间的创造力,以设计新颖和创新的机器人。我们的方法学旨在通过从学习环境中昂贵的设备中取消动手学习经验来使机器人技术工程民主化。
translated by 谷歌翻译
基于变异方法的量子算法是构建量子溶液的最有前途的方法之一,并在过去几年中发现了无数的应用。尽管具有适应性和简单性,但它们的可扩展性和选择合适的ATZ的选择仍然是主要的挑战。在这项工作中,我们报告了基于嵌套的蒙特卡洛树搜索(MCTS)的算法框架,并与组合多部队的bastit相结合( CMAB)模型,用于量子电路的自动设计。通过数值实验,我们证明了应用于各种问题的算法,包括量子化学中的地面能量问题,在图上进行量子优化,求解线性方程的系统,并找到编码编码与现有方法相比,用于量子误差检测代码的电路,结果表明我们的电路设计算法可以探索更大的搜索空间并优化较大系统的量子电路,从而显示出多功能性和可扩展性。
translated by 谷歌翻译
了解机器学习(ML)管道不同阶段的多重公平性增强干预措施的累积效应是公平文献的关键且毫无疑问的方面。这些知识对于数据科学家/ML从业人员设计公平的ML管道可能很有价值。本文通过进行了一项广泛的经验研究迈出了探索该领域的第一步,其中包括60种干预措施,9个公平指标,2个公用事业指标(准确性和F1得分),跨4个基准数据集。我们定量分析实验数据,以衡量多种干预措施对公平,公用事业和人口群体的影响。我们发现,采用多种干预措施会导致更好的公平性和更低的效用,而不是个人干预措施。但是,添加更多的干预措施并不总是会导致更好的公平或更差的公用事业。达到高性能(F1得分)以及高公平的可能性随大的干预措施增加。不利的一面是,我们发现提高公平的干预措施会对不同的人群群体,尤其是特权群体产生负面影响。这项研究强调了对新的公平指标的必要性,这些指标是对不同人口群体的影响,除了群体之间的差异。最后,我们提供了一系列干预措施的列表,这些措施为不同的公平和公用事业指标做得最好,以帮助设计公平的ML管道。
translated by 谷歌翻译
联合学习(FL)可以通过各种不同远程数据源的机器学习模型的分布式计算,而无需将任何单独的数据传输到集中位置。这导致改进的模型的完全性,并且随着更多来源和较大的数据集被添加到联合中的计算和计算的有效缩放。然而,最近的成员攻击表明,当模型参数或摘要统计数据与中央站点共享时,有时可以泄露或推断出私有或敏感的个人数据,需要改进的安全解决方案。在这项工作中,我们提出了一种使用全同性全相治(FHE)的安全FL框架。具体而言,我们使用CKKS构造,近似浮点兼容方案,这些方案受益于密文包装和重新扫描。在我们对大型脑MRI数据集的评估中,我们使用建议的安全流动框架来培训深度学习模型,以预测分布式MRI扫描的一个人的年龄,一个共同的基准测试任务,并证明在学习表现中没有降级在加密和非加密的联合模型之间。
translated by 谷歌翻译
我们通过基于压缩感测和多输出(MIMO)无线雷达来解决材料缺陷的检测,这些材料缺陷在层状材料结构内部。这里,由于层状结构的表面的反射导致的强杂波通常经常使缺陷挑战的缺陷。因此,需要改进的缺陷检测所需的复杂信号分离方法。在许多情况下,我们感兴趣的缺陷的数量是有限的,并且分层结构的信令响应可以被建模为低秩结构。因此,我们提出了对缺陷检测的关节等级和稀疏最小化。特别是,我们提出了一种基于迭代重量的核和$ \ ell_1- $规范(一种双重重量方法)的非凸法方法,与传统的核规范和$ \ ell_1- $常态最小化相比获得更高的准确性。为此,迭代算法旨在估计低级别和稀疏贡献。此外,我们建议深入学习来学习算法(即,算法展开)的参数,以提高算法的准确性和汇聚速度。我们的数值结果表明,该方法在恢复的低级别和稀疏组分的均方误差和收敛速度方面优于常规方法。
translated by 谷歌翻译