最近的工作表明,难以察觉的扰动可以应用于工艺未被动实施例(ULE),即其内容不能用于改善训练期间的分类器的图像。在本文中,我们揭示了研究人员应遵循的道路,因为它们最初制定了(Uleos)。本文进行了四项贡献。首先,我们展示了Uleos利用颜色,因此,可以通过简单的灰度预过滤来减轻它们的效果,而无需诉诸对抗性培训。其次,我们向Uleos提出了一个延伸,它被称为uleo-grayaugs,这将通过在优化期间利用灰度知识和数据增强来迫使所产生的ules远离频道明智的颜色扰动。第三,我们表明,在复杂的卷积神经网络(CNN)分类器的情况下,使用多层的Perceptrons(MLP)产生的Uleos是有效的,这表明CNN遭受了对电机的特定漏洞。第四,我们证明当分类器培训ULEOS时,对抗性训练将防止在清洁图像和对抗性图像上测量的准确度。在一起,我们的贡献代表了不可见的例子的艺术状态的大量进展,但也揭示了他们行为的重要特征,必须更好地理解,以实现进一步的改进。
translated by 谷歌翻译
快速,高度准确,可靠的引力波浪的推动,可以实现实时多信使天文学。目前贝叶斯推理方法虽然高度准确可靠,但很慢。深度学习模型已经表明了引力波的推理任务非常快速,但由于神经网络的黑箱性质,它们的产出本质上是可疑的。在这项工作中,我们通过应用了多头卷积神经网络产生的近似后验的重要性抽样加入贝叶斯推论和深度学习。神经网络参数化Von Mises-Fisher和天空坐标和高斯分布的天空坐标和两个群众,用于给定Ligo和Virgo探测器的模拟重力波注射。我们为看不见的引力波事件产生跨ysmaps,这是几分钟内使用贝叶斯推理产生的高等类似的预测。此外,我们可以检测神经网络的差,并迅速向它们标记。
translated by 谷歌翻译
现代深度学习需要大规模广泛标记的数据集进行培训。少量学习旨在通过有效地从少数标记的例子中学习来缓解这个问题。在先前提出的少量视觉分类器中,假设对分类器决定的特征歧管具有不相关的特征尺寸和均匀特征方差。在这项工作中,我们专注于通过提出以低标签制度运行的差异敏感的模型来解决这一假设引起的限制。第一种方法简单的CNAP,采用基于分层正规的Mahalanobis距离基于距离的分类器,与现有神经自适应特征提取器的状态相结合,以在元数据集,迷你成像和分层图像基准基准上实现强大性能。我们进一步将这种方法扩展到转换学习设置,提出转导压盖。这种转换方法将软k-means参数细化过程与两步任务编码器相结合,以实现使用未标记数据的改进的测试时间分类精度。转导CNAP在元数据集上实现了最先进的性能。最后,我们探讨了我们的方法(简单和转换)的使用“开箱即用”持续和积极的学习。大规模基准的广泛实验表明了这一点的鲁棒性和多功能性,相对说话,简单的模型。所有培训的模型检查点和相应的源代码都已公开可用。
translated by 谷歌翻译
神经网络的架构和参数通常独立优化,这需要每当修改体系结构时对参数的昂贵再次再次再次进行验证。在这项工作中,我们专注于在不需要昂贵的再培训的情况下越来越多。我们提出了一种在训练期间添加新神经元的方法,而不会影响已经学到的内容,同时改善了培训动态。我们通过最大化新重量的梯度来实现后者,并通过奇异值分解(SVD)有效地找到最佳初始化。我们称这种技术渐变最大化增长(Gradmax),并展示其各种视觉任务和架构的效力。
translated by 谷歌翻译
我们提出了一种基于图的基于图的方法,用于标记给定的气道树分割的解剖学分支。该方法在气道树图中制定了气道标记作为分支分类问题,其中使用卷积神经网络(CNN)提取分支特征,并使用图形神经网络富集。我们的图形神经网络是通过从其本地邻居的每个节点聚合信息来实现的结构感知,并通过编码图中的节点位置来定位。我们在来自慢性阻塞性肺病(COPD)的各种严重阶段的受试者的220个气道树上评估了该方法。结果表明,我们的方法是计算上高效的,并且显着提高了分支分类性能而不是基线方法。与标准CNN方法获得的83.83 \%相比,我们的方法的总体平均精度达到91.18 \%。我们在https://github.com/diagnijmegen/spgnn发布了我们的源代码。该算法还在HTTPS://grand-Challenge.org/algorithms/airway-anatomical-labeling/上公开使用。
translated by 谷歌翻译
在文献中提出了以计算可处理方式指定规范人工制品(规范,合同,政策)的几种解决方案。已提出法律核心本体,以系统化与规范性推理相关的概念和关系。但是,在那些方面没有解决一般接受,并且没有识别出常见的地面(代表性计算),使我们能够轻松地比较它们。然而,所有这些努力共享代表规范性指令的相同动机,因此它可能有可能存在包含所有的代表性模型。此演示文稿将引入DPCL,用于指定以HOHFELD基本法律概念框架为中心的更高级别的策略(包括规范,合同等)的域特定语言(DSL)。 DPCL必须主要作为“模板”,即建筑参考的信息模型,而不是完全成熟的正式语言;它旨在明确规范规范语言应该预期的一般要求。在这方面,它相当朝着法律核心本体的方向,但不同于那些,我们的提议旨在保持DSL的特征,而不是一组逻辑框架中的一组公理:它意味着交叉编译向基础语言/工具充足于目标应用类型。我们在此提供一些语言功能的概述。
translated by 谷歌翻译
基于LIDAR的应用的现有学习方法使用预先确定的波束配置下扫描的3D点,例如,光束的高度角度均匀分布。那些固定的配置是任务不可行的,因此只需使用它们即可导致次优性能。在这项工作中,我们采取了新的路线来学习优化给定应用程序的LIDAR波束配置。具体地,我们提出了一种基于加强学习的学习 - 优化(RL-L2O)框架,以便以不同的基于LIDAR的应用程序以端到端的方式自动优化光束配置。优化是通过目标任务的最终性能指导的,因此我们的方法可以通过任何基于LIDAR的应用程序轻松集成为简单的下载模块。例如,当需要低分辨率(低成本)LIDAR时,该方法特别有用,例如,用于以大规模的系统部署。我们使用方法来搜索两个重要任务的低分辨率LIDAR的光束配置:3D对象检测和本地化。实验表明,与基线方法相比,所提出的RL-L2O方法显着提高了两项任务的性能。我们认为,我们的方法与最近可编程Lidars的进步的组合可以启动基于LIDAR的积极感知的新的研究方向。代码在https://github.com/vnemlas/lidar_beam_selection上公开使用
translated by 谷歌翻译
大多数凝视估计研究仅适用于相机完美地捕获眼睛凝视的设置条件。他们没有明确指定如何为一个人的给定位置正确设置相机。在本文中,我们对逻辑相机设置位置进行了凝视估计的研究。我们进一步通过使用具有逼真场景的廉价边缘设备在实际应用中进行了研究。也就是说,我们首先建立一个购物环境,在那里我们想要掌握客户凝视行为。该设置需要最佳摄像机位置,以便从现有的凝视估计研究中维持估计精度。然后,我们应用几秒钟学习凝视估计,以减少推理阶段中的训练采样。在实验中,我们对NVIDIA Jetson TX2进行了实施的研究,并达到了合理的速度,12 FPS与我们的参考工作相比更快,而没有缩小估计精度的劣化。源代码在https://github.com/linh-gist/gazeestimationtx2发布。
translated by 谷歌翻译
假设发行版是高斯通常促进别侵害的计算。我们考虑一个旨在实现与具有高斯的先前分配和高斯似然函数的强盗环境获得低信息比的代理,但是在应用于伯努利强盗时研究代理的性能。当代理商与Bernoulli强盗互动时,我们建立了贝叶斯遗憾的增加,相对于对高斯匪徒的信息定理束缚。如果高斯的现有分配和似然函数足够弥散,则随着时间的平方根,这种增加的增加,因此每次时间增长都会增加消失。我们的结果正式化了所谓的贝叶斯代理在漫反射错过分布的差异时所谓的贝叶斯代理人仍然有效。
translated by 谷歌翻译
在时空邻域中利用类似和更清晰的场景补丁对于视频去纹理至关重要。然而,基于CNN的方法显示了捕获远程依赖性和建模非本地自相相似性的限制。在本文中,我们提出了一种新颖的框架,流引导稀疏变压器(FGST),用于视频去掩模。在FGST中,我们定制自我关注模块,流动引导的基于稀疏窗口的多头自我关注(FGSW-MSA)。对于模糊参考帧上的每个$查询$元素,FGSW-MSA享有估计的光流向全局样本的指导,其空间稀疏但与相邻帧中相同的场景补丁对应的高度相关$键$元素。此外,我们介绍了一种反复嵌入(RE)机制,以从过去的框架转移信息并加强远程时间依赖性。综合实验表明,我们提出的FGST优于DVD和GoPro数据集的最先进的(SOTA)方法,甚至在真实视频去纹理中产生更多视觉上令人愉悦的结果。代码和型号将发布给公众。
translated by 谷歌翻译