近年来,虚拟学习已成为传统课堂教学的替代方法。学生参与虚拟学习可能会对满足学习目标和计划辍学风险产生重大影响。在虚拟学习环境中,有许多专门针对学生参与度(SE)的测量工具。在这项关键综述中,我们分析了这些作品,并从不同的参与定义和测量量表上突出了不一致之处。现有研究人员之间的这种多样性在比较不同的注释和构建可推广的预测模型时可能会出现问题。我们进一步讨论了有关参与注释和设计缺陷的问题。我们根据我们定义的七个参与注释的七个维度分析现有的SE注释量表,包括来源,用于注释的数据模式,注释发生的时间,注释发生的时间段,抽象,组合和组合水平的时间段,定量。令人惊讶的发现之一是,在SE测量中,很少有审查的数据集使用了现有的精神法法学验证量表中的注释中。最后,我们讨论了除虚拟学习以外的其他一些范围,这些量表具有用于测量虚拟学习中SE的潜力。
translated by 谷歌翻译
过渡到成年是许多家庭的重要生活阶段。先前的研究表明,具有智力或发展的年轻人(IDD)比同龄人面临的挑战更多。这项研究是为了探索如何使用自然语言处理(NLP)方法,尤其是无监督的机器学习,以帮助心理学家分析情绪和情感,并使用主题建模来确定年轻人IDD及其家人所拥有的常见问题和挑战。此外,将结果与从没有IDD的年轻人那里获得的结果进行了比较。研究结果表明,NLP方法对于心理学家分析情绪,进行跨案例分析并从对话数据中汇总关键主题非常有用。我们的Python代码可在https://github.com/mlaricheva/emotion_topic_modeling上找到。
translated by 谷歌翻译
会话数据在心理学中至关重要,因为它可以帮助研究人员了解个人的认知过程,情感和行为。话语标签是分析此类数据的常见策略。 NLP算法的开发使研究人员可以自动化此任务。但是,心理对话数据给NLP研究人员带来了一些挑战,包括多标签分类,大量类别和有限的可用数据。这项研究探讨了NLP方法生成的自动标签如何与人类在成年过渡的对话的背景下与人类标签相媲美。我们提出了应对心理学研究中提出的三个共同挑战的策略。我们的发现表明,具有领域适应性的深度学习方法(Roberta-Con)优于所有其他机器学习方法。我们提出的分层标签系统被证明可帮助研究人员战略性地分析对话数据。我们的Python代码和NLP模型可在https://github.com/mlaricheva/automated_labeling上获得。
translated by 谷歌翻译