最近的工作表明,难以察觉的扰动可以应用于工艺未被动实施例(ULE),即其内容不能用于改善训练期间的分类器的图像。在本文中,我们揭示了研究人员应遵循的道路,因为它们最初制定了(Uleos)。本文进行了四项贡献。首先,我们展示了Uleos利用颜色,因此,可以通过简单的灰度预过滤来减轻它们的效果,而无需诉诸对抗性培训。其次,我们向Uleos提出了一个延伸,它被称为uleo-grayaugs,这将通过在优化期间利用灰度知识和数据增强来迫使所产生的ules远离频道明智的颜色扰动。第三,我们表明,在复杂的卷积神经网络(CNN)分类器的情况下,使用多层的Perceptrons(MLP)产生的Uleos是有效的,这表明CNN遭受了对电机的特定漏洞。第四,我们证明当分类器培训ULEOS时,对抗性训练将防止在清洁图像和对抗性图像上测量的准确度。在一起,我们的贡献代表了不可见的例子的艺术状态的大量进展,但也揭示了他们行为的重要特征,必须更好地理解,以实现进一步的改进。
translated by 谷歌翻译
快速,高度准确,可靠的引力波浪的推动,可以实现实时多信使天文学。目前贝叶斯推理方法虽然高度准确可靠,但很慢。深度学习模型已经表明了引力波的推理任务非常快速,但由于神经网络的黑箱性质,它们的产出本质上是可疑的。在这项工作中,我们通过应用了多头卷积神经网络产生的近似后验的重要性抽样加入贝叶斯推论和深度学习。神经网络参数化Von Mises-Fisher和天空坐标和高斯分布的天空坐标和两个群众,用于给定Ligo和Virgo探测器的模拟重力波注射。我们为看不见的引力波事件产生跨ysmaps,这是几分钟内使用贝叶斯推理产生的高等类似的预测。此外,我们可以检测神经网络的差,并迅速向它们标记。
translated by 谷歌翻译
在CT图像中与Covid-19相关联的肺病变的自动分割需要大量的注释体积。注释授权专家知识,并通过全部手动分割方法获得时间密集。另外,肺病变具有大的患者间变异,具有与健康肺组织相似的视觉外观的病理学。当应用数据标签时,在应用现有的半自动交互式分段技术时,这会带来挑战。为了解决这些挑战,我们提出了一个有效的卷积神经网络(CNNS),可以在注释者提供基于杂交的交互时在线学习。为了从仅通过用户交互标记的样本加速学习,基于补丁的方法用于训练网络。此外,我们使用加权交叉熵丢失来解决可能由用户交互导致的类别不平衡。在线推理期间,使用完全卷积的方法将学习网络应用于整个输入卷。我们将建议的方法与最先进的方法进行比较,并表明它优于与Covid-19相关联的肺病变的任务表现出现有的方法,在减少3美元\ Times $减少执行时间的同时实现16%的骰子分数。需要9000个较小的基于血小板的标记体素。由于在线学习方面,我们的方法将快速适应用户输入,从而产生高质量的细分标签。源代码将在接受时提供。
translated by 谷歌翻译
在文献中提出了以计算可处理方式指定规范人工制品(规范,合同,政策)的几种解决方案。已提出法律核心本体,以系统化与规范性推理相关的概念和关系。但是,在那些方面没有解决一般接受,并且没有识别出常见的地面(代表性计算),使我们能够轻松地比较它们。然而,所有这些努力共享代表规范性指令的相同动机,因此它可能有可能存在包含所有的代表性模型。此演示文稿将引入DPCL,用于指定以HOHFELD基本法律概念框架为中心的更高级别的策略(包括规范,合同等)的域特定语言(DSL)。 DPCL必须主要作为“模板”,即建筑参考的信息模型,而不是完全成熟的正式语言;它旨在明确规范规范语言应该预期的一般要求。在这方面,它相当朝着法律核心本体的方向,但不同于那些,我们的提议旨在保持DSL的特征,而不是一组逻辑框架中的一组公理:它意味着交叉编译向基础语言/工具充足于目标应用类型。我们在此提供一些语言功能的概述。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
增强学习的数据毒害历史上专注于一般性绩效退化,目标攻击已经通过扰动取得了成功,涉及控制受害者的政策和奖励。我们介绍了一个阴险的中毒攻误,用于加强学习,这只会在特定目标状态下引起代理人不端行为 - 所有的,而且在最小地修改小数一小部分的培训观察,而不假设任何控制政策或奖励。我们通过调整最近的技术,梯度对准来实现这一目标,以加强学习。我们测试我们的方法,并在两个Atari游戏中展示了不同困难的成功。
translated by 谷歌翻译
来自多个磁共振成像(MRI)方式的脑肿瘤分割是医学图像计算中的具有挑战性的任务。主要挑战在于各种扫描仪和成像协议的普遍性。在本文中,我们探讨了在不增加推理时间的情况下增加模型稳健性的策略。为此目的,我们探索使用不同损失,优化仪和培训验证数据拆分培训的型号的强大合奏。重要的是,我们探讨了U-Net架构的瓶颈中的变压器。虽然我们在瓶颈中发现变压器比平均基线U-Net更差,但是广义的Wasserstein骰子损失一致地产生优异的结果。此外,我们采用了高效的测试时间增强策略,以实现更快和强大的推论。我们的最终集合具有测试时间增强的七个3D U-Nets的平均骰子得分为89.4%,平均HAUSDORFF 95%距离10.0 mm在Brats 2021测试数据集时。我们的代码和培训的型号在https://github.com/lucasfidon/trabit_brats2021上公开提供。
translated by 谷歌翻译
有希望的方法来改善气候模型中的云参数化,因此气候预测是使用深度学习与来自Storm-解析模型(SRM)模拟的培训数据结合使用。 ICOSAHEDRAL非静水压(图标)建模框架允许模拟从数值天气预报到气候投影,使其成为开发基于神经网络(NN)的子网比例过程的参数化的理想目标。在图标框架内,我们通过基于逼真的区域和全局图标SRM模拟培训基于NN的云覆盖参数化。我们设置了三种不同类型的NNS,其垂直局部程度不同,它们假设从粗粒粒度大气状态变量诊断云盖。 NNS精确地从粗粒数据中估计子网格尺度云覆盖,该数据具有与其训练数据相似的地理特征。此外,全球培训的NNS可以再现区域SRM仿真的子网格级云覆盖。使用基于游戏理论的可解释性库福芙添加剂解释,我们识别特定湿度和云冰上的过分传播,以及我们基于列的NN不能从全局到区域粗粒度SRM数据完全概括的原因。该解释工具还有助于可视化区域和全球训练的基于列的NNS之间的特征重要性的相似性和差异,并在其云覆盖预测和热力学环境之间揭示了本地关系。我们的结果表明,深度学习的潜力从全球SRMS获得准确但可解释的云覆盖参数化,并表明基于邻域的模型可能是精度和概括性之间的良好折衷。
translated by 谷歌翻译
增强学习(RL)的潜力是通过奖励工程问题的部分瓶颈部分瓶颈。启发式试验和错误的一个替代方案是基于偏好的RL(PBRL),其中奖励函数从稀疏的人体反馈推断出来。然而,先前的PBR方法缺乏学习奖励结构的可解释性,这妨碍了评估鲁棒性和对准的能力。我们提出了一种在线,积极的偏好学习算法,用树木的本质上可解释,构成结构构建奖励功能。使用合成和人为提供的反馈,我们在若干环境中展示了树结构奖励功能的样本高效学习,然后利用增强的解释性来探索和调试进行对齐。
translated by 谷歌翻译
我们创建了一种用于检测反犹太主义的细粒度的AI系统。这种解释的AI将识别跨平台在线社交媒体信息中的语言和德语的反犹太主义,识别对在线社交媒体信息中的言论,口头侵略和阴谋,以支持高级决策。
translated by 谷歌翻译