Non-Pharmaceutical Interventions (NPIs), such as social gathering restrictions, have shown effectiveness to slow the transmission of COVID-19 by reducing the contact of people. To support policy-makers, multiple studies have first modeled human mobility via macro indicators (e.g., average daily travel distance) and then studied the effectiveness of NPIs. In this work, we focus on mobility modeling and, from a micro perspective, aim to predict locations that will be visited by COVID-19 cases. Since NPIs generally cause economic and societal loss, such a micro perspective prediction benefits governments when they design and evaluate them. However, in real-world situations, strict privacy data protection regulations result in severe data sparsity problems (i.e., limited case and location information). To address these challenges, we formulate the micro perspective mobility modeling into computing the relevance score between a diffusion and a location, conditional on a geometric graph. we propose a model named Deep Graph Diffusion Infomax (DGDI), which jointly models variables including a geometric graph, a set of diffusions and a set of locations.To facilitate the research of COVID-19 prediction, we present two benchmarks that contain geometric graphs and location histories of COVID-19 cases. Extensive experiments on the two benchmarks show that DGDI significantly outperforms other competing methods.
translated by 谷歌翻译
Graph neural networks (GNNs) are popular weapons for modeling relational data. Existing GNNs are not specified for attribute-incomplete graphs, making missing attribute imputation a burning issue. Until recently, many works notice that GNNs are coupled with spectral concentration, which means the spectrum obtained by GNNs concentrates on a local part in spectral domain, e.g., low-frequency due to oversmoothing issue. As a consequence, GNNs may be seriously flawed for reconstructing graph attributes as graph spectral concentration tends to cause a low imputation precision. In this work, we present a regularized graph autoencoder for graph attribute imputation, named MEGAE, which aims at mitigating spectral concentration problem by maximizing the graph spectral entropy. Notably, we first present the method for estimating graph spectral entropy without the eigen-decomposition of Laplacian matrix and provide the theoretical upper error bound. A maximum entropy regularization then acts in the latent space, which directly increases the graph spectral entropy. Extensive experiments show that MEGAE outperforms all the other state-of-the-art imputation methods on a variety of benchmark datasets.
translated by 谷歌翻译
基于模型的步态识别方法通常采用行人步行姿势来识别人类。但是,由于摄像头视图的改变,现有方法并未明确解决人类姿势的较大阶层差异。在本文中,我们建议通过通过低UPPER生成的对抗网络(Lugan)学习全级转换矩阵来为每个单视姿势样本生成多视图姿势序列。通过摄像机成像的先验,我们得出的是,跨视图之间的空间坐标满足了全级矩阵的线性转换,因此,本文采用了对抗性训练来从源姿势学习转换矩阵,并获得目标视图以获得目标。目标姿势序列。为此,我们实现了由图形卷积(GCN)层组成的发电机,完全连接(FC)层和两支分支卷积(CNN)层:GCN层和FC层编码源姿势序列和目标视图,然后是CNN分支最后,分别学习一个三角形基质和上三角基质,最后它们被乘以制定全级转换矩阵。出于对抗训练的目的,我们进一步设计了一个条件鉴别因子,该条件区分姿势序列是真实的还是产生的。为了启用高级相关性学习,我们提出了一个名为Multi尺度超图卷积(HGC)的插件播放模块,以替换基线中的空间图卷积层,该层可以同时模拟联合级别的部分,部分部分 - 水平和身体水平的相关性。在两个大型步态识别数据集(即CASIA-B和OUMVLP置位)上进行的广泛实验表明,我们的方法的表现优于基线模型,并以一个较大的边距基于基于姿势的方法。
translated by 谷歌翻译
分子的产生,尤其是从头开始产生3D分子几何形状(即3D \ textit {de Novo} Generation)已成为药物设计中的一项基本任务。现有的基于扩散的3D分子生成方法可能会遭受性能不令人满意的性能,尤其是在产生大分子时。同时,产生的分子缺乏足够的多样性。本文提出了一个新的扩散模型,以应对这两个挑战。首先,原子关系不在分子的3D点云表示中。因此,现有生成模型很难捕获潜在的原子间力和丰富的局部约束。为了应对这一挑战,我们建议增强潜在的原子间力,并进一步涉及双重模棱两可的编码器,以编码不同强度的原子质力。其次,现有的基于扩散的模型基本上是沿数据密度梯度的几何元素。这样的过程在Langevin动力学的中间步骤中缺乏足够的探索。为了解决这个问题,我们在每个扩散/反向步骤中引入了一个分布控制变量,以实施彻底的探索并进一步改善发电多样性。对多个基准测试的广泛实验表明,所提出的模型明显优于无条件和条件生成任务的现有方法。我们还进行案例研究以帮助了解产生分子的理化特性。
translated by 谷歌翻译
图对比度学习已被证明是图形神经网络(GNN)预训练的有效任务。但是,一个关键问题可能会严重阻碍现有作品中的代表权:当前方法创建的积极实例通常会错过图表的关键信息,甚至会错过非法实例(例如分子生成中的非化学意识图)。为了解决此问题,我们建议直接从训练集中的现有图中选择正图实例,该实例最终保持与目标图的合法性和相似性。我们的选择基于某些特定于域的成对相似性测量以及从层次图编码图中的相似性关系的采样。此外,我们开发了一种自适应节点级预训练方法,以动态掩盖节点在图中均匀分布。我们对来自各个域的$ 13 $图形分类和节点分类基准数据集进行了广泛的实验。结果表明,通过我们的策略预先培训的GNN模型可以胜过那些训练有素的从划痕模型以及通过现有方法获得的变体。
translated by 谷歌翻译
作为建模复杂关系的强大工具,HyperGraphs从图表学习社区中获得了流行。但是,深度刻画学习中的常用框架专注于具有边缘独立的顶点权重(EIVW)的超图,而无需考虑具有具有更多建模功率的边缘依赖性顶点权重(EDVWS)的超图。为了弥补这一点,我们提出了一般的超图光谱卷积(GHSC),这是一个通用学习框架,不仅可以处理EDVW和EIVW HyperGraphs,而且更重要的是,理论上可以明确地利用现有强大的图形卷积神经网络(GCNN)明确说明,从而很大程度上可以释放。超图神经网络的设计。在此框架中,给定的无向GCNN的图形拉普拉斯被统一的HyperGraph Laplacian替换,该统一的HyperGraph Laplacian通过将我们所定义的广义超透明牌与简单的无向图等同起来,从随机的步行角度将顶点权重信息替换。来自各个领域的广泛实验,包括社交网络分析,视觉目标分类和蛋白质学习,证明了拟议框架的最新性能。
translated by 谷歌翻译
学习神经集功能在许多应用中越来越重要,例如产品推荐和AI辅助药物发现中的复合选择。在功能值Oracle下,大多数现有的作品研究方法学方法学方法学都需要昂贵的监督信号。这使得仅在最佳子集(OS)Oracle下仅进行弱监督的应用程序使其不切实际,而研究的研究令人惊讶地忽略了。在这项工作中,我们提出了一个原则上但实用的最大似然学习框架,称为等效性,该框架同时满足OS ORACLE下的以下学习设置功能:i)置入了模型的设定质量函数的置换率; ii)许可不同地面套件; iii)最低先验;和iv)可伸缩性。我们框架的主要组成部分涉及:对设定质量函数的基于能量的处理,深空式体系结构来处理置换不变性,平均场变异推理及其摊销变体。由于这些高级体系结构的优雅组合,对三个现实世界应用的实证研究(包括亚马逊产品推荐,设置异常检测和虚拟筛选的复合选择)表明,EquivSet的表现优于基本线的大幅度。
translated by 谷歌翻译
点击率(CTR)预测旨在估算用户单击项目的可能性,是在线广告的重要组成部分。现有方法主要尝试从用户的历史行为中挖掘用户兴趣,这些行为包含用户直接交互的项目。尽管这些方法取得了长足的进步,但通常会受到推荐系统的直接曝光和不活动相互作用的限制,因此无法挖掘所有潜在的用户利益。为了解决这些问题,我们提出了基于邻居相互作用的CTR预测(NI-CTR),该预测在异质信息网络(HIN)设置下考虑此任务。简而言之,基于邻居相互作用的CTR预测涉及HIN目标用户项目对的本地邻域以预测其链接。为了指导当地社区的表示形式,我们从显式和隐性的角度考虑了本地邻里节点之间的不同类型的相互作用,并提出了一种新颖的图形掩盖变压器(GMT),以有效地将这些类型的交互结合到为目标用户项目对生成高度代表性的嵌入。此外,为了提高针对邻居采样的模型鲁棒性,我们在嵌入邻里的嵌入式上执行了一致性正规化损失。我们对数百万个实例进行了两个现实世界数据集进行了广泛的实验,实验结果表明,我们所提出的方法的表现明显优于最先进的CTR模型。同时,全面的消融研究验证了我们模型每个组成部分的有效性。此外,我们已经在具有数十亿用户的微信官方帐户平台上部署了此框架。在线A/B测试表明,针对所有在线基线的平均CTR改进为21.9。
translated by 谷歌翻译
作为图形神经网络(GNNS)在数字病理学中被广泛采用,越来越关注GNN的发出解释模型(解释器),以提高临床决策的透明度。现有的解释者发现与预测相关的解释性子图。然而,这种子图不足以揭示预测的所有关键生物学子结构,因为在去除该子图之后预测将保持不变。因此,解释性子图不仅应该需要预测,而且应该足以揭示用于解释的最具预测区域。这种解释需要测量从不同输入子图传送到预测输出的信息,我们将其定义为信息流。在这项工作中,我们解决了这些关键挑战并提出了IFExplainer,它为GNN产生了必要和充分的解释。为了评估GNN预测中的信息流,我们首先提出了一种新颖的预测性概念,命名为$ F $ -Information,它是定向的,并包含GNN模型的现实容量。基于它,IFExplainer产生具有最大信息流到预测的解释性子图。同时,在去除解释之后,它最小化了从输入到预测结果的信息流。因此,所产生的解释对于预测并且足以揭示最重要的子结构是重要的。我们评估IFExplainer以解释GNN对乳腺癌亚型的预测。 BRACS数据集的实验结果显示了该方法的卓越性能。
translated by 谷歌翻译
数据增强已广泛用于图像数据和语言数据,但仍然探索图形神经网络(GNN)。现有方法专注于从全局视角增强图表数据,并大大属于两个类型:具有特征噪声注入的结构操纵和对抗训练。但是,最近的图表数据增强方法忽略了GNNS“消息传递机制的本地信息的重要性。在这项工作中,我们介绍了本地增强,这通过其子图结构增强了节点表示的局部。具体而言,我们将数据增强模拟为特征生成过程。鉴于节点的功能,我们的本地增强方法了解其邻居功能的条件分布,并生成更多邻居功能,以提高下游任务的性能。基于本地增强,我们进一步设计了一个新颖的框架:La-GNN,可以以即插即用的方式应用于任何GNN模型。广泛的实验和分析表明,局部增强一致地对各种基准的各种GNN架构始终如一地产生性能改进。
translated by 谷歌翻译