在本文中,我们使用两个无监督的学习算法的组合介绍了路边激光雷达物体检测的解决方案。 3D点云数据首先将球形坐标转换成球形坐标并使用散列函数填充到方位角网格矩阵中。之后,RAW LIDAR数据被重新排列成空间 - 时间数据结构,以存储范围,方位角和强度的信息。基于强度信道模式识别,应用动态模式分解方法将点云数据分解成低级背景和稀疏前景。三角算法根据范围信息,自动发现分割值以将移动目标与静态背景分开。在强度和范围背景减法之后,将使用基于密度的检测器检测到前景移动物体,并编码到状态空间模型中以进行跟踪。所提出的模型的输出包括车辆轨迹,可以实现许多移动性和安全应用。该方法针对商业流量数据收集平台进行了验证,并证明了对基础设施激光雷达对象检测的高效可靠的解决方案。与之前的方法相比,该方法直接处理散射和离散点云,所提出的方法可以建立3D测量数据的复杂线性关系较小,这捕获了我们经常需要的空间时间结构。
translated by 谷歌翻译