我们对跨越各个领域的多种域的275个经验网络的随机块模型(SBM)的拟合质量和尺寸幅度的订单进行系统分析。我们采用后预测模型检查作为评估拟合质量的标准,这涉及根据一组网络描述符比较由经验网络的推断模型生成的网络。我们观察到SBM能够为大多数网络提供准确的描述,但缺乏所有建模要求。特别地,具有大直径和慢速混合随机步道的网络往往由SBM非常赘言。然而,与经常假设的相反,在许多情况下,SBM可以很好地描述具有高丰度三角形的网络。我们证明,简单的网络描述符可用于评估SBM是否可以提供足够准确的表示,可能指向可以系统地提高这类模型的表现力的可能模型扩展。
translated by 谷歌翻译
社区检测是网络科学中最重要的方法领域之一,在过去的几十年里引起了大量关注的方法之一。该区域处理网络的自动部门到基础构建块中,目的是提供其大规模结构的概要。尽管它的重要性和广泛的采用普及,所谓的最先进和实际在各种领域实际使用的方法之间存在明显的差距。在这里,我们试图通过根据是否具有“描述性”或“推论”目标来划分现有方法来解决这种差异。虽然描述性方法在基于社区结构的直观概念的网络中找到模式的模式,但是推理方法阐述了精确的生成模型,并尝试将其符合数据。通过这种方式,他们能够为网络形成机制提供见解,并以统计证据支持的方式与随机性的单独结构。我们审查如何使用推论目标采用描述性方法被陷入困境和误导性答案,因此应该一般而言。我们认为推理方法更通常与更清晰的科学问题一致,产生更强大的结果,并且应该是一般的首选。我们试图消除一些神话和半真半假在实践中使用社区检测时,努力改善这些方法的使用以及对结果的解释。
translated by 谷歌翻译
网络慷慨地,相似节点的趋势和传递性,连接两个节点的趋势如果它们共享公共邻居,则在网络分析中被混为特性,因为一个机制可以驱动另一个机制。在这里,我们提出了一种能够区分两个机制的生成模型和相应的推理过程。我们的方法基于随机块模型(SBM)的变化,增加了三合一封闭边缘,其推断可以识别负责网络中每个边缘存在的最合理的机制,以及基础社区结构本身。我们展示该方法如何避免通过网络中的三角形形成的单独引起的虚假社区的检测,以及它在与没有三合会的纯版本的纯版本相比,如何提高边缘预测的性能。
translated by 谷歌翻译
当地球经历全球变暖时,自然灾害,如洪水,龙卷风或野火,越来越普遍普遍。很难预测事件的何时何时会发生,所以及时的应急响应对于拯救受破坏事件危害的人的生命至关重要。幸运的是,技术可以在这些情况下发挥作用。社交媒体帖子可以用作低延迟数据源来了解灾难的进展和后果,但解析此数据无需自动化方法。在前的工作主要集中在基于文本的过滤,但基于图像和基于视频的过滤仍然很大程度上是未开发的。在这项工作中,我们介绍了一个大规模的多标签数据集,其中包含977,088个图像,43个事件和49个地方。我们提供数据集建设,统计和潜在偏差的详细信息;介绍和训练事件检测模型;在Flickr和Twitter上为数百万图像进行图像过滤实验。我们还提出了一些关于事件分析的申请,以鼓励和使未来的人道主义援助中的计算机愿景工作。代码,数据和模型可在http://incidentsdataset.csail.mit.edu上获得。
translated by 谷歌翻译
我们介绍了一个自由视的渲染方法 - Humannerf - 这对人类进行了复杂的身体运动的给定单曲视频工作,例如,来自YouTube的视频。我们的方法可以在任何帧中暂停视频,并从任意新相机视点呈现对象,甚至是该特定帧和身体姿势的完整360度摄像机路径。这项任务特别具有挑战性,因为它需要合成身体的光电型细节,如从输入视频中可能不存在的各种相机角度所见,以及合成布折叠和面部外观的细细节。我们的方法优化了在规范T型姿势中的人的体积表示,同时通过运动场,该运动场通过向后的警报将估计的规范表示映射到视频的每个帧。运动场分解成骨骼刚性和非刚性运动,由深网络产生。我们对现有工作显示出显着的性能改进,以及从移动人类的单眼视频的令人尖锐的观点渲染的阐释示例,以挑战不受控制的捕获场景。
translated by 谷歌翻译
这项工作旨在解决学习多元化陈述的长期问题。为此,我们将信息理论论点与随机竞争的激活,即随机本地获奖者 - 所有(LWTA)单位结合起来。在这种情况下,我们致力于表示学习的传统深层架构,依赖于非线性激活;相反,我们用本地和随机竞争的线性单位组替换它们。在此设置中,每个网络层产生稀疏输出,由组织成竞争对手块之间的竞争的结果确定。我们采用竞争机制的随机论据,执行后部采样以确定每个块的获胜者。我们进一步赋予考虑的网络能够推断网络的子部分,这对于在手头上建模数据至关重要;我们将适当的粘性前锋施加到此目的。为了进一步丰富新兴陈述的信息,我们求助于信息 - 理论原则,即信息竞争过程(ICP)。然后,所有组件在随机变分贝叶斯框架下捆绑在一起进行推理。我们对我们的方法进行了彻底的实验研究,使用基准数据集进行了图像分类。正如我们在实验表明的那样,所产生的网络产生了显着的歧视性学习能力。此外,介绍的范例允许新出现的中间网络表示的原则调查机制。
translated by 谷歌翻译
通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
使用规划算法和神经网络模型的基于模型的强化学习范例最近在不同的应用中实现了前所未有的结果,导致现在被称为深度增强学习的内容。这些代理非常复杂,涉及多个组件,可能会为研究产生挑战的因素。在这项工作中,我们提出了一个适用于这些类型代理的新模块化软件架构,以及一组建筑块,可以轻松重复使用和组装,以构建基于模型的增强学习代理。这些构建块包括规划算法,策略和丢失功能。我们通过将多个这些构建块组合实现和测试经过针对三种不同的测试环境的代理来说明这种架构的使用:Cartpole,Minigrid和Tictactoe。在我们的实施中提供的一个特定的规划算法,并且以前没有用于加强学习,我们称之为Imperage Minimax,在三个测试环境中取得了良好的效果。用这种架构进行的实验表明,规划算法,政策和损失函数的最佳组合依赖性严重问题。该结果提供了证据表明,拟议的架构是模块化和可重复使用的,对想要研究新环境和技术的强化学习研究人员有用。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
联合学习是一种流行的技术,用于在不共享数据的情况下培训分布式数据源上的机器学习模型。基于垂直的联合学习或基于功能的联合学习适用于不同数据源共享相同的样本ID空间但在特征空间中不同的情况。为了确保数据所有者的长期参与,客观地评估每个数据源的贡献并相应地汇总贡献至关重要。福利价值(SV)是源自合作博弈论的可怕公平贡献估值指标。然而,计算SV需要在数据源的每个子集中广泛地重新培训模型,这导致联合学习中的高通信成本。我们提出了一种基于SV的垂直联合福利价值(VerfedSv)的贡献估值度量。我们表明Verfedsv不仅满足了公平性的许多理想的属性,而且还有效地计算,并且可以适用于同步和异步垂直联合学习算法。理论分析和广泛的实验结果均验证了Verfedsv的公平性,效率和适应性。
translated by 谷歌翻译