使用规划算法和神经网络模型的基于模型的强化学习范例最近在不同的应用中实现了前所未有的结果,导致现在被称为深度增强学习的内容。这些代理非常复杂,涉及多个组件,可能会为研究产生挑战的因素。在这项工作中,我们提出了一个适用于这些类型代理的新模块化软件架构,以及一组建筑块,可以轻松重复使用和组装,以构建基于模型的增强学习代理。这些构建块包括规划算法,策略和丢失功能。我们通过将多个这些构建块组合实现和测试经过针对三种不同的测试环境的代理来说明这种架构的使用:Cartpole,Minigrid和Tictactoe。在我们的实施中提供的一个特定的规划算法,并且以前没有用于加强学习,我们称之为Imperage Minimax,在三个测试环境中取得了良好的效果。用这种架构进行的实验表明,规划算法,政策和损失函数的最佳组合依赖性严重问题。该结果提供了证据表明,拟议的架构是模块化和可重复使用的,对想要研究新环境和技术的强化学习研究人员有用。
translated by 谷歌翻译
网络安全已经关注了很长一段时间。在最近几年,网络理念的规模和复杂程度越来越大,通过技术的重大进步推动。如今,保护系统和数据对于业务连续性至关重要的不可避免的必要性。因此,已经创建了许多入侵检测系统,以试图减轻这些威胁并有助于及时检测。这项工作提出了一种可解释和解释的混合性入侵检测系统,它利用人工智能方法来实现更好,更持久的安全性。该系统将专家的书面规则和动态知识与决策树算法连续生成,因为从网络活动中出现了新的证据。
translated by 谷歌翻译
由单一头皮电极(加上参考电极)捕获的时间序列用于预测癫痫发作的敏感性。时间序列进行预处理,分割,每个节段使用三种不同的已知方法转化为图像:复发图,Gramian Angular Field,Markov Transition Firt Field。通过平均CNN的SoftMax层的输出来计算,在未来预定义的时间窗口中发生癫痫发作的可能性与通常考虑分类层输出的情况不同。通过阈值这种可能性,癫痫发作的预测具有更好的性能。有趣的是,对于几乎每个患者,最佳阈值与50%不同。结果表明,该技术可以预测一些癫痫发作和患者的良好结果。但是,需要更多的测试,即更多的患者和更多的癫痫发作,以更好地了解该技术的真正潜力。
translated by 谷歌翻译
通过离散采样观测来建模连续的动力系统是数据科学中的一个基本问题。通常,这种动力学是非本地过程随时间不可或缺的结果。因此,这些系统是用插差分化方程(IDE)建模的;构成积分和差分组件的微分方程的概括。例如,大脑动力学不是通过微分方程来准确模拟的,因为它们的行为是非马克维亚的,即动态是部分由历史决定的。在这里,我们介绍了神经IDE(NIDE),该框架使用神经网络建模IDE的普通和组成部分。我们在几个玩具和大脑活动数据集上测试NIDE,并证明NIDE的表现优于其他模型,包括神经ODE。这些任务包括时间外推,以及从看不见的初始条件中预测动态,我们在自由行为的小鼠中测试了全皮质活动记录。此外,我们表明,NIDE可以通过学识渊博的整体操作员将动力学分解为马尔可夫和非马克维亚成分,我们在氯胺酮的fMRI脑活动记录中测试了动力学。最后,整体操作员的整体提供了一个潜在空间,可深入了解潜在的动态,我们在宽阔的大脑成像记录上证明了这一点。总体而言,NIDE是一种新颖的方法,可以通过神经网络对复杂的非本地动力学进行建模。
translated by 谷歌翻译
隔离架构在语音分离中显示出非常好的结果。像其他学习的编码器模型一样,它使用了短帧,因为它们已被证明在这些情况下可以获得更好的性能。这导致输入处有大量帧,这是有问题的。由于隔离器是基于变压器的,因此其计算复杂性随着较长的序列而大大增加。在本文中,我们在语音增强任务中采用了隔离器,并表明,通过以短期傅立叶变换(STFT)表示替换学习式编码器的功能,我们可以使用长帧而不会损害感知增强性能。我们获得了同等的质量和清晰度评估得分,同时将10秒的话语减少了大约8倍。
translated by 谷歌翻译
端到端的学习模型表明,在执行语音隔离方面具有显着的能力。尽管它们在现实世界中广泛应用,但对他们对分组的机制并因此将单个说话者隔离开来知之甚少。在这项工作中,我们知道谐调是这些网络分组源的关键提示,我们对Convtasnet和DPT-NET进行了彻底的研究,以分析它们如何对输入混合物进行谐波分析。我们进行彻底研究,在其中应用低通,高通和带路的多个传球循环过滤器,以凭经验分析最重要的隔离谐波。我们还研究了这些网络如何通过引入合成混合物中的不连续性来决定将哪种输出通道分配给估计来源。我们发现,端到端网络非常不稳定,并且在面对人类无法察觉的变形时性能差。用频谱图替换这些网络中的编码器会导致整体性能降低,但稳定性更高。这项工作有助于我们理解这些网络依赖语音隔离的信息,并揭示了两种概括源。它还将编码器指定为负责这些错误的网络的一部分,从而可以重新设计专家知识或转移学习。
translated by 谷歌翻译
本文提出了一种新的方法,该方法结合了卷积层(CLS)和大规模的度量度量,用于在小数据集上进行培训模型以进行纹理分类。这种方法的核心是损失函数,该函数计算了感兴趣的实例和支持向量之间的距离。目的是在迭代中更新CLS的权重,以学习一类之间具有较大利润的表示形式。每次迭代都会产生一个基于这种表示形式的支持向量表示的大细边缘判别模型。拟议方法的优势W.R.T.卷积神经网络(CNN)为两倍。首先,由于参数数量减少,与等效的CNN相比,它允许用少量数据进行表示。其次,自返回传播仅考虑支持向量以来,它的培训成本较低。关于纹理和组织病理学图像数据集的实验结果表明,与等效的CNN相比,所提出的方法以较低的计算成本和更快的收敛性达到了竞争精度。
translated by 谷歌翻译
近年来,深神经网络(DNN)应用的流行和成功促使对DNN压缩的研究,例如修剪和量化。这些技术加速了模型推断,减少功耗,并降低运行DNN所需的硬件的大小和复杂性,而准确性几乎没有损失。但是,由于DNN容易受到对抗输入的影响,因此重要的是要考虑压缩和对抗性鲁棒性之间的关系。在这项工作中,我们研究了几种不规则修剪方案和8位量化产生的模型的对抗性鲁棒性。此外,尽管常规修剪消除了DNN中最不重要的参数,但我们研究了一种非常规修剪方法的效果:根据对抗输入的梯度去除最重要的模型参数。我们称这种方法称贪婪的对抗修剪(GAP),我们发现这种修剪方法会导致模型可抵抗从其未压缩的对应物转移攻击的模型。
translated by 谷歌翻译
在本章中,我们概述了数据驱动和理论知觉的社交网络复杂模型及其在理解社会不平等和边缘化方面的潜力。我们专注于网络和基于网络的算法以及它们如何影响少数群体引起的不平等现象。特别是,我们研究了同质和混合偏见如何塑造大小社交网络,影响少数民族的感知并影响协作模式。我们还讨论了网络和网络的动态过程以及规范和健康不平等的形成。此外,我们认为网络建模是揭示排名和社会推荐算法对少数群体可见性的影响至关重要的。最后,我们强调了这个新兴研究主题中的主要挑战和未来机会。
translated by 谷歌翻译
训练机学习算法是一个计算密集型过程,由于反复访问大型培训数据集,因此经常会限制内存。结果,以处理器为中心的系统(例如CPU,GPU)遭受了内存单元和处理单元之间的昂贵数据移动,这会消耗大量的能量和执行周期。以内存为中心的计算系统,即具有内存处理(PIM)功能的计算系统,可以减轻此数据运动瓶颈。我们的目标是了解现代通用PIM体系结构加速机器学习培训的潜力。为此,我们(1)将几种代表性的经典机器学习算法(即线性回归,逻辑回归,决策树,K-均值聚类)上实现在现实世界通用PIM架构上(2)以术语来表征它们与CPU和GPU上的同行实现相比,(3)将其准确性,性能和缩放率进行比较。我们对具有2500多个PIM核心的内存计算系统进行的实验评估表明,当PIM硬件在必要的操作和数据类型上,通用PIM体系结构可以极大地加速记忆的机器学习工作负载。据我们所知,我们的工作是第一个评估现实世界通用PIM体系结构的机器学习算法培训的工作。
translated by 谷歌翻译