神经网络的架构和参数通常独立优化,这需要每当修改体系结构时对参数的昂贵再次再次再次进行验证。在这项工作中,我们专注于在不需要昂贵的再培训的情况下越来越多。我们提出了一种在训练期间添加新神经元的方法,而不会影响已经学到的内容,同时改善了培训动态。我们通过最大化新重量的梯度来实现后者,并通过奇异值分解(SVD)有效地找到最佳初始化。我们称这种技术渐变最大化增长(Gradmax),并展示其各种视觉任务和架构的效力。
translated by 谷歌翻译
心脏电生理学领域试图摘要,描述并最终模拟心跳的电气特性。随着近期心脏电生理学的进展,模型与以往更强大和描述。然而,为了前进到逆电生理学建模领域,即从诸如ECG的电测量中创建模型,较少调查的模拟ECGS的平滑度W.R.T.需要进一步探索模型参数。本文在整个管道方面讨论了描述了描述生理参数的方式,我们到达模拟的心电图。采用这种管道,我们创建了一种简化理想化的左心室模型的测试台,并通过平滑成本函数来证明高效逆建模的最重要因素。这些知识对于在未来的优化和机器学习方法中设计和创建逆模型非常重要。
translated by 谷歌翻译
在文献中提出了以计算可处理方式指定规范人工制品(规范,合同,政策)的几种解决方案。已提出法律核心本体,以系统化与规范性推理相关的概念和关系。但是,在那些方面没有解决一般接受,并且没有识别出常见的地面(代表性计算),使我们能够轻松地比较它们。然而,所有这些努力共享代表规范性指令的相同动机,因此它可能有可能存在包含所有的代表性模型。此演示文稿将引入DPCL,用于指定以HOHFELD基本法律概念框架为中心的更高级别的策略(包括规范,合同等)的域特定语言(DSL)。 DPCL必须主要作为“模板”,即建筑参考的信息模型,而不是完全成熟的正式语言;它旨在明确规范规范语言应该预期的一般要求。在这方面,它相当朝着法律核心本体的方向,但不同于那些,我们的提议旨在保持DSL的特征,而不是一组逻辑框架中的一组公理:它意味着交叉编译向基础语言/工具充足于目标应用类型。我们在此提供一些语言功能的概述。
translated by 谷歌翻译
在这项工作中,我们介绍了一种基于双季度的单眼手眼校准的方法。由于单手术机制的非度量缩放转换,除了旋转和翻译校准之外,还必须估计缩放因子。为此,我们得出了一种二次约束的二次程序,允许组合估计所有外本校准参数。由于其紧凑的表示,使用双季度导致低运行时间。我们的问题配方进一步允许同时为相同传感器设置的不同序列估计多个缩放。基于我们的问题制定,我们派生了,快速的本地和全球最佳的解决方法。最后,评估了我们的算法,并与最先进的模拟和实际数据的方法进行了评估,例如,EUROC MAV数据集。
translated by 谷歌翻译
本文报告了Chalearn的Autodl挑战系列的结果和后攻击分析,这有助于对自动学习(DL)进行分类,以便在各种环境中引入的深度学习(DL),但缺乏公平的比较。格式化所有输入数据模型(时间序列,图像,视频,文本,表格)作为张量,所有任务都是多标签分类问题。代码提交已在隐藏的任务上执行,具有限制时间和计算资源,推动快速获取结果的解决方案。在此设置中,DL方法占主导地位,但流行的神经结构搜索(NAS)是不切实际的。解决方案依赖于微调预培训的网络,架构匹配数据模块。挑战后测试没有透露超出强加时间限制的改进。虽然没有组件尤其原始或新颖,但是一个高级模块化组织出现了“Meta-Learner”,“数据摄入”,“模型选择器”,“模型/学习者”和“评估员”。这种模块化使得消融研究,揭示了(离坡)元学习,合奏和高效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(本地)最优性。我们的挑战队遗产包括一个持久的基准(http://utodl.chalearn.org),获胜者的开放源代码,以及免费的“autodl自助服务”。
translated by 谷歌翻译
由于生产和依赖数据集以产生自动化决策系统(广告)增加,因此需要评估和询问底层数据的过程。在2018年启动数据集营养标签后,数据营养项目已对标签的设计和目的进行了重大更新,并在2020年代后期推出更新的标签,该标签在本文中预览。新标签包括通过针对数据科学家配置文件的更新的设计和用户界面提供的上下文专用用例和警报。本文讨论了标签旨在减轻的潜在培训数据的危害和偏见,包括标记,新的和现有挑战以及工作的进一步方向,以及预览新的新数据集标签。
translated by 谷歌翻译
在信息检索(IR)系统中,趋势和用户的兴趣可能会随着时间的推移而变化,改变要建议的请求或内容的分布。由于神经排名越来越依赖于培训数据,因此了解最近IR方法的转移能力在长期地址新域名的转移能力至关重要。在本文中,我们首先提出基于MSMarco语料库的数据集,旨在建模长期的主题以及IR属性驱动的受控设置。然后,我们深入分析最近神经红外模型的能力,同时不断地学习这些流。我们的实证研究突出显示在其中发生灾难性遗忘(例如,任务之间的相似程度,文本长度的特点,学习模型的方式),以便在模型设计方面提供未来的方向。
translated by 谷歌翻译
儿童性滥用和剥削(CSAE)受害者的确切年龄估计是最重要的数字取证挑战之一。调查人员通常需要通过查看图像和解释性发展阶段和其他人类特征来确定受害者的年龄。主要优先事项 - 保障儿童 - 通常受到这项工作可能需要的巨大的法医反积云,认知偏见和巨大的心理压力的负面影响。本文评估了现有的面部图像数据集,并提出了一种针对类似数字法医研究贡献的需求而定制的新数据集。这个小型,不同的DataSet为0到20岁的个人包含245个图像,并与FG-Net DataSet的82个唯一图像合并,从而实现了具有高图像分集和低年龄范围密度的327个图像。在IMDB-Wiki DataSet上预先培训的深度期望(DEX)算法测试新数据集。 16至20岁的年轻青少年和年龄较大的青少年/成年人的整体成果非常令人鼓舞 - 达到1.79年的MAE,但也表明0至10岁儿童的准确性需要进一步的工作。为了确定原型的功效,已经考虑了四个数字法医专家的有价值输入,以提高年龄估计结果。需要进一步的研究来扩展关于图像密度的数据集和性别和种族分集等因素的平等分布。
translated by 谷歌翻译
高动态范围(HDR)成像在现代数字摄影管道中具有根本重要性,并且尽管在图像上变化照明,但仍用于生产具有良好暴露区域的高质量照片。这通常通过在不同曝光时拍摄多个低动态范围(LDR)图像来实现。然而,由于补偿不良的运动导致人工制品如重影,过度暴露的地区和未对准误差。在本文中,我们提出了一种新的HDR成像技术,可以专门模拟对准和曝光不确定性以产生高质量的HDR结果。我们介绍了一种使用HDR感知的HDR感知的不确定性驱动的注意力映射来联合对齐和评估对齐和曝光可靠性的策略,该注意力映像鲁棒地将帧合并为单个高质量的HDR图像。此外,我们介绍了一种渐进式多级图像融合方法,可以以置换不变的方式灵活地合并任何数量的LDR图像。实验结果表明,我们的方法可以为最先进的高达0.8dB的PSNR改进,以及更好的细节,颜色和更少人工制品的主观改进。
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译