我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
我们对数据驱动的需求工程,尤其是对用户评论的考虑。这些在线评论是提取新需求和改进请求的丰富信息来源。在这项工作中,我们使用Camembert提供了自动分析,Camembembert是法语中最先进的语言模型。我们从健康与健身领域的三个应用程序中创建了一个由6000个用户评论的多标签分类数据集。结果令人鼓舞,并建议可以自动识别有关新功能请求的评论。数据集可在以下网址获得:https://github.com/jl-wei/apia2022-french-user-reviews-classification-dataset。
translated by 谷歌翻译
产生表现力和上下文适当的韵律仍然是现代文本到语音(TTS)系统的挑战。对于长,多句的输入,这一点尤其明显。在本文中,我们检查了基于变压器的快速语音系统的简单扩展,目的是改善多句子TT的韵律。我们发现,漫长的上下文,强大的文本功能以及对多演讲者数据的培训都改善了韵律。更有趣的是,它们产生协同作用。长篇小说席卷了韵律,改善了连贯性,并发挥了变形金刚的优势。来自强大的语言模型(例如BERT)的微调单词级功能似乎从更多培训数据中获利,在多演讲者设置中很容易获得。我们调查有关暂停和起搏的客观指标,并对语音自然进行彻底的主观评估。我们的主要系统结合了所有扩展,取得了始终如一的良好结果,包括对所有竞争对手的言语自然性的显着改善。
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
目的是对临床文本去识别的自然语言处理(NLP)模型的评估取决于临床注释的可用性,临床注释通常由于隐私问题而受到限制。 NLP沙盒是一种通过采用联合模型到数据的方法来减轻NLP模型缺乏数据和评估框架的方法。这使得无偏见的联合模型评估无需共享多个机构的敏感数据。材料和方法我们利用Synapse协作框架,容器化软件和OpenAPI Generator来构建NLP沙盒(NLPSANDBOX.IO)。我们使用来自三个机构的数据评估了两个最先进的NLP去识别注释模型Philter和Neuroner。我们使用来自外部验证站点的数据进一步验证了模型性能。结果我们通过去识别临床模型评估证明了NLP沙箱的有用性。外部开发人员能够将其模型纳入NLP沙盒模板中,并提供用户体验反馈。讨论我们证明了使用NLP沙箱对临床文本去识别模型进行多站点评估的可行性,而无需共享数据。标准化模型和数据模式可以使模型传输和实现平稳。为了概括NLP沙箱,数据所有者和模型开发人员需要进行工作,以开发合适和标准化的模式,并调整其数据或模型以适合模式。结论NLP沙箱降低了利用临床数据进行NLP模型评估的障碍,并促进了联合会的NLP模型的联合,多站点,无偏见的评估。
translated by 谷歌翻译
世界各地的隐私法律和法规的景观是复杂而不断变化的。国家和超国家法律,协议,法令和其他政府发行的规则构成了公司必须遵循的拼凑而成才能在国际上进行运作。为了检查该拼凑而成的状态和演变,我们介绍了1,043条隐私法,法规和准则的政府隐私指示语料库或GPI语料库,涵盖了182个司法管辖区。该语料库可以对法律焦点进行大规模定量和定性检查。我们检查了创建GPI的时间分布,并说明了过去50年中隐私立法的急剧增加,尽管较细粒度的检查表明,增加的速度取决于GPIS所说的个人数据类型。我们的探索还表明,大多数隐私法分别解决了相对较少的个人数据类型,这表明全面的隐私立法仍然很少见。此外,主题建模结果显示了GPI中常见主题的普遍性,例如财务,医疗保健和电信。最后,我们将语料库释放到研究界,以促进进一步的研究。
translated by 谷歌翻译
我们引入了与针孔摄像机中图像形成相关的代数几何对象的地图集。地图集的节点是代数品种或它们的消失理想,分别通过投影,消除,限制或专业化相互关联。该地图集为研究3D计算机视觉中的问题提供了一个统一的框架。我们通过完全表征来自三角剖分问题的部分地图集来启动地图集的研究。我们以几个空旷的问题和地图集的概括结束。
translated by 谷歌翻译
数值验证是机器学习研究的核心,因为它允许评估新方法的实际影响,并确认理论和实践之间的一致性。然而,该领域的快速发展构成了一些挑战:研究人员面临着大量的方法来比较,有限的透明度和最佳实践的共识以及乏味的重新实施工作。结果,验证通常是非常部分的,这可能会导致错误的结论,从而减慢研究的进展。我们提出了Benchopt,这是一个协作框架,旨在在跨编程语言和硬件体系结构的机器学习中自动化,复制和发布优化基准。 Benchopt通过提供用于运行,共享和扩展实验的现成工具来简化社区的基准测试。为了展示其广泛的可用性,我们在三个标准学习任务上展示基准:$ \ ell_2 $ regulaine的逻辑回归,套索和RESNET18用于图像分类的培训。这些基准强调了关键的实际发现,这些发现对这些问题的最新问题更加细微,这表明在实际评估中,魔鬼在细节上。我们希望Benchopt能在社区中促进合作工作,从而改善研究结果的可重复性。
translated by 谷歌翻译
全球抗菌耐药性(AMR)的增加是对人类健康的严重威胁。为了避免AMR的传播,快速可靠的诊断工具可以促进最佳的抗生素管理。在这方面,拉曼光谱学有望在一步中快速标记和无培养物鉴定以及抗菌敏感性测试(AST)。但是,尽管许多基于拉曼的细菌识别和AST研究表现出了令人印象深刻的结果,但仍必须解决一些缺点。为了弥合概念验证研究和临床应用之间的差距,我们与新的数据增强算法相结合开发了机器学习技术,以快速鉴定最小制备的细菌表型和甲氧西林抗甲氧西林(MR)的区别(MR)的区别甲氧西林敏感(MS)细菌。为此,我们为细菌的超光谱拉曼图像实施了光谱变压器模型。我们表明,我们的模型在精度和训练时间方面都超过了许多分类问题的标准卷积神经网络模型。对于六种MR-MS细菌物种,我们在数据集中达到了超过96美元的分类精度,该数据集由15个不同类别和95.6 $ \%$分类精度。更重要的是,我们的结果仅使用快速,易于生产的培训和测试数据获得
translated by 谷歌翻译