通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
监视自动实时流处理系统的行为已成为现实世界应用中最相关的问题之一。这种系统的复杂性已在很大程度上依赖于高维输入数据和数据饥饿的机器学习(ML)算法。我们提出了一个灵活的系统,功能监视(FM),该系统在此类数据集中检测数据漂移,并具有较小且恒定的内存足迹和流应用程序中的小计算成本。该方法基于多变量统计测试,并且是由设计驱动的数据(从数据中估算了完整的参考分布)。它监视系统使用的所有功能,同时每当发生警报时提供可解释的功能排名(以帮助根本原因分析)。系统的计算和记忆轻度是由于使用指数移动直方图而导致的。在我们的实验研究中,我们用其参数分析了系统的行为,更重要的是显示了它检测到与单个特征无直接相关的问题的示例。这说明了FM如何消除添加自定义信号以检测特定类型问题的需求,并且监视功能可用空间通常足够。
translated by 谷歌翻译
综合产生的内容的广泛扩散是一种需要紧急对策的严重威胁。合成含量的产生不限于多媒体数据,如视频,照片或音频序列,但涵盖了可以包括生物图像的显着大面积,例如西幕和微观图像。在本文中,我们专注于检测综合生成的西幕图像。生物医学文献在很大程度上探讨了西部污染图像,已经表明了如何通过目视检查或标准取证检测器轻松地伪造这些图像。为了克服缺乏公开可用的数据集,我们创建了一个包含超过14k原始的西幕图像和18K合成的Western-Blot图像的新数据集,由三种不同的最先进的生成方法产生。然后,我们调查不同的策略来检测合成的Western印迹,探索二进制分类方法以及单级探测器。在这两种情况下,我们从不利用培训阶段的合成纤维图像。所达到的结果表明,即使在这些科学图像的合成版本未优化利用检测器,综合生成的西幕图像也可以具有良好的精度。
translated by 谷歌翻译
本文研究了体育视频上自动化机器描述的建模,最近取得了很多进展。尽管如此,最新的方法还没有捕捉人类专家如何分析体育场景。有几个主要原因:(1)使用的数据集是从非官方提供商那里收集的,该数据集自然会在这些数据集和现实世界应用程序训练的模型之间造成差距; (2)先前提出的方法需要广泛的注释工作(即,像素级别的玩家和球分割)在本地化有用的视觉特征上以产生可接受的结果; (3)很少有公共数据集可用。在本文中,我们提出了一个新颖的大型NBA数据集,用于体育视频分析(NSVA),重点是字幕,以应对上述挑战。我们还设计了一种统一的方法,将原始视频处理成一堆有意义的功能,并以最小的标签工作进行了处理,这表明使用变压器体系结构对此类功能进行交叉建模会导致强大的性能。此外,我们通过解决了另外两个任务,即精细的运动动作识别和显着的球员识别,证明了NSVA的广泛应用。代码和数据集可在https://github.com/jackwu502/nsva上找到。
translated by 谷歌翻译
当通过玻璃等半充实介质进行成像时,通常可以在捕获的图像中找到另一个场景的反射。它降低了图像的质量并影响其后续分析。在本文中,提出了一种新的深层神经网络方法来解决成像中的反射问题。传统的反射删除方法不仅需要长时间的计算时间来解决不同的优化功能,而且不能保证其性能。由于如今的成像设备可以轻松获得数组摄像机,因此我们首先在本文中建议使用卷积神经网络(CNN)采用基于多图像的深度估计方法。提出的网络避免了由于图像中的反射而引起的深度歧义问题,并直接估计沿图像边缘的深度。然后,它们被用来将边缘分类为属于背景或反射的边缘。由于具有相似深度值的边缘在分类中易于误差,因此将它们从反射删除过程中删除。我们建议使用生成的对抗网络(GAN)来再生删除的背景边缘。最后,估计的背景边缘图被馈送到另一个自动编码器网络,以帮助从原始图像中提取背景。实验结果表明,与最先进的方法相比,提出的反射去除算法在定量和定性上取得了出色的性能。与使用传统优化方法相比,所提出的算法还显示出比现有方法相比的速度要快得多。
translated by 谷歌翻译
本文涉及分割中的伪标记。我们的贡献是四倍。首先,我们提出了伪标签的新表述,作为一种预期最大化(EM)算法,用于清晰的统计解释。其次,我们纯粹基于原始伪标记,即Segpl,提出了一种半监督的医学图像分割方法。我们证明,SEGPL是针对针对2D多级MRI MRI脑肿瘤分段任务和3D二进制CT肺部肺血管分段任务的半监督分割的最新一致性正则方法的竞争方法。与先前方法相比,SEGPL的简单性允许更少的计算成本。第三,我们证明了SEGPL的有效性可能源于其稳健性抵抗分布噪声和对抗性攻击。最后,在EM框架下,我们通过变异推理引入了SEGPL的概率概括,该推论学习了训练期间伪标记的动态阈值。我们表明,具有变异推理的SEGPL可以通过金标准方法深度集合在同步时执行不确定性估计。
translated by 谷歌翻译
本文介绍了一个开源Python工具箱,称为“集合功能重要性(EFI)”,以提供机器学习(ML)研究人员,领域专家和决策者,具有强大而准确的功能重要性的重要性量化,以及更可靠的机械解释,对使用预测问题的特征的重要性更重要模糊集。该工具包的开发是为了解决特征重要性量化的不确定性,并且由于机器学习算法的多样性,重要性计算方法和数据集依赖性而缺乏可信赖的特征重要性解释。 EFI使用数据自举和决策融合技术(例如平均值,多数投票和模糊逻辑)与多个机器学习模型合并了不同的特征重要性计算方法。 EFI工具箱的主要属性是:(i)ML算法的自动优化,(ii)从优化的ML算法和功能重要性计算技术中自动计算一组功能重要性系数,(iii)使用多个重要性系数的自动汇总决策融合技术和(iv)模糊成员资格功能,显示了每个功能对预测任务的重要性。描述了工具箱的关键模块和功能,并使用流行的IRIS数据集提供了其应用程序的简单示例。
translated by 谷歌翻译
可以使用X射线自由电子激光器的强脉冲和短脉冲直接通过单次相干衍射成像直接观察到自由飞行中孤立的纳米样品的结构和动力学。广角散射图像甚至编码样品的三维形态信息,但是该信息的检索仍然是一个挑战。到目前为止,只有通过与高度约束模型拟合,需要对单镜头实现有效的三维形态重建,这需要有关可能的几何形状的先验知识。在这里,我们提出了一种更通用的成像方法。依赖于允许凸多面体描述的任何样品形态的模型,我们从单个银纳米颗粒中重建广角衍射模式。除了具有高对称性的已知结构动机外,我们还检索了以前无法访问的不完美形状和聚集物。我们的结果为单个纳米颗粒的真实3D结构确定以及最终的超快纳米级动力学的3D电影开辟了新的途径。
translated by 谷歌翻译
手术工作流程预期可以预测进行哪些步骤或接下来使用哪些工具,这是计算机辅助干预系统的重要组成部分,例如机器人手术中的工作流程推理。但是,当前的方法仅限于它们在工具之间关系的表达能力不足。因此,我们提出了一个图形表示学习框架,以全面表示手术工作流期望问题中的仪器运动。在我们提出的图表表示中,我们将仪器的边界框信息映射到连续帧中的图节点,并构建框架间/互动图形的图形边缘,以表示随着时间的推移仪器的轨迹和相互作用。这种设计增强了我们网络对手术仪器的空间和时间模式及其相互作用的建模能力。此外,我们设计了一种多型胜利学习策略,以平衡对各种视野无动于衷的预期任务的理解,从而大大改善了各种视野的预期模型性能。 cholec80数据集的实验证明了我们提出的方法的性能可以超过基于较富主链的最新方法,尤其是在仪器预期中(1.27 v.s. 1.48 for Inmae; 1.48 v.s. 2.68 for Emae)。据我们所知,我们是第一个将时空图表引入外科工作流程预期的人。
translated by 谷歌翻译
规范有助于规范社会。规范可以是明确的(以结构化形式表示)或隐式。我们通过开发代理商来解决明确规范的出现,这些代理商在决定制裁和确定替代规范时提供了违反规范的解释。这些试剂使用遗传算法来生成规范和增强学习,以学习这些规范的价值。我们发现,应用解释会导致规范为代理提供更好的凝聚力和目标满意度。我们的结果对于具有不同慷慨态度的社会是稳定的。
translated by 谷歌翻译