濒危语言的用户努力在数字化介导的世界中蓬勃发展。我们开发了一种自动化方法,用于评估ISO 639认可的每种语言在数字语言支持方面的表现。该评估是基于从143个数字工具的网站上删除支持语言的名称,以代表数字技术可以支持语言的各种方式。该方法使用Mokken量表分析来生成可解释的模型,以量化数字语言支持并在全球范围内监视它。
translated by 谷歌翻译
人类机器人相互作用(HRI)对于在日常生活中广泛使用机器人至关重要。机器人最终将能够通过有效的社会互动来履行人类文明的各种职责。创建直接且易于理解的界面,以与机器人开始在个人工作区中扩散时与机器人互动至关重要。通常,与模拟机器人的交互显示在屏幕上。虚拟现实(VR)是一个更具吸引力的替代方法,它为视觉提示提供了更像现实世界中看到的线索。在这项研究中,我们介绍了Jubileo,这是一种机器人的动画面孔,并使用人类机器人社会互动领域的各种研究和应用开发工具。Jubileo Project不仅提供功能齐全的开源物理机器人。它还提供了一个全面的框架,可以通过VR接口进行操作,从而为HRI应用程序测试带来沉浸式环境,并明显更好地部署速度。
translated by 谷歌翻译
计算物理问题问题的有限元离散通常依赖于自适应网格细化(AMR)来优先解决模拟过程中包含重要特征的区域。但是,这些空间改进策略通常是启发式的,并且依靠特定领域的知识或反复试验。我们将自适应网状精炼的过程视为不完整的信息下的本地,顺序决策问题,将AMR作为部分可观察到的马尔可夫决策过程。使用深厚的增强学习方法,我们直接从数值模拟中训练政策网络为AMR策略训练。培训过程不需要精确的解决方案或手头部分微分方程的高保真地面真相,也不需要预先计算的培训数据集。我们强化学习公式的本地性质使政策网络可以廉价地培训比部署的问题要小得多。该方法不是特定于任何特定的部分微分方程,问题维度或数值离散化的特定,并且可以灵活地结合各种问题物理。为此,我们使用各种高阶不连续的Galerkin和杂交不连续的Galerkin有限元离散化,将方法应用于各种偏微分方程。我们表明,由此产生的深入强化学习政策与共同的AMR启发式方法具有竞争力,跨越问题类别概括,并在准确性和成本之间取得了有利的平衡,因此它们通常会导致每个问题自由度的准确性更高。
translated by 谷歌翻译
我们研究自主代理如何学会从不同领域(例如不同环境或不同代理)中的示范中执行任务。这样的跨域模仿学习需要例如从人类专家的演示中培训人造代理。我们提出了一个可扩展的框架,该框架可以实现跨域模仿学习,而无需访问其他演示或进一步的领域知识。我们共同培训学习者的政策,并通过对抗性培训学习学习者和专家领域的映射。我们通过使用共同信息标准来找到包含与任务相关的信息的专家状态空间的嵌入,并且对域细节不变。此步骤大大简化了估计学习者和专家领域之间的映射,因此有助于端到端学习。我们证明了在相当不同的域之间成功转移了政策,而没有额外的示范,以及其他方法失败的情况。
translated by 谷歌翻译
当植物天然产物与药物共容纳时,就会发生药代动力学天然产物 - 药物相互作用(NPDIS)。了解NPDI的机制是防止不良事件的关键。我们构建了一个知识图框架NP-KG,作为迈向药代动力学NPDIS的计算发现的一步。 NP-KG是一个具有生物医学本体论,链接数据和科学文献的全文,由表型知识翻译框架和语义关系提取系统,SEMREP和集成网络和动态推理组成的构建的科学文献的全文。通过路径搜索和元路径发现对药代动力学绿茶和kratom-prug相互作用的案例研究评估NP-KG,以确定与地面真实数据相比的一致性和矛盾信息。完全集成的NP-KG由745,512个节点和7,249,576个边缘组成。 NP-KG的评估导致了一致(绿茶的38.98%,kratom的50%),矛盾(绿茶的15.25%,21.43%,Kratom的21.43%),同等和矛盾的(15.25%)(21.43%,21.43%,21.43% kratom)信息。几种声称的NPDI的潜在药代动力学机制,包括绿茶 - 茶氧化烯,绿茶 - 纳多洛尔,Kratom-Midazolam,Kratom-Quetiapine和Kratom-Venlafaxine相互作用,与已出版的文献一致。 NP-KG是第一个将生物医学本体论与专注于天然产品的科学文献的全文相结合的公斤。我们证明了NP-KG在鉴定涉及酶,转运蛋白和药物的药代动力学相互作用的应用。我们设想NP-KG将有助于改善人机合作,以指导研究人员将来对药代动力学NPDIS进行研究。 NP-KG框架可在https://doi.org/10.5281/zenodo.6814507和https://github.com/sanyabt/np-kg上公开获得。
translated by 谷歌翻译
在机器学习中,对神经网络集合(NNE)(NNE)引起了新的兴趣,从而从一组较小的模型(而不是从单个较大的模型)中获得了预测作为汇总的预测。在这里,我们展示了如何使用随机系统中稀有轨迹的技术来定义和训练NNE。我们根据模型参数的轨迹定义一个NNE,在简单的,离散的时间,扩散动力学下,并通过将这些轨迹偏向较小的时间整合损失来训练NNE,并由适当的计数领域控制,这些领域的作用是超参数。我们证明了该技术在一系列简单监督的学习任务上的生存能力。与更常规的基于梯度的方法相比,我们讨论了轨迹采样方法的潜在优势。
translated by 谷歌翻译
已知神经模型被过度参数化,最近的工作表明,稀疏的文本到语音(TTS)模型可以超过密集的模型。尽管已经为其他域提出了大量稀疏方法,但这种方法很少在TTS中应用。在这项工作中,我们试图回答以下问题:所选稀疏技术在性能和模型复杂性上的特征是什么?我们比较了Tacotron2基线和应用五种技术的结果。然后,我们通过自然性,清晰度和韵律来评估表现,同时报告模型规模和训练时间。与先前的研究相辅相成,我们发现在训练之前或期间进行修剪可以实现与训练后的修剪相似的性能,并且可以更快地进行培训,同时除去整个神经元降低了性能远不止于删除参数。据我们所知,这是比较文本到语音综合中稀疏范式的第一部作品。
translated by 谷歌翻译
农作物管理,包括氮(N)受精和灌溉管理,对农作物产量,经济利润和环境产生了重大影响。尽管存在管理指南,但要在特定的种植环境和农作物中找到最佳的管理实践是挑战。先前的工作使用加强学习(RL)和作物模拟器来解决该问题,但是训练有素的政策要么具有有限的性能,要么在现实世界中不可部署。在本文中,我们提出了一种智能作物管理系统,该系统通过RL,模仿学习(IL)同时优化N受精和灌溉,并使用农业技术决策系统(DSSAT)进行了作物模拟。我们首先使用Deep RL,尤其是Deep Q-Network来培训需要从模拟器中的所有状态信息作为观测值(表示为完整观察)的管理政策。然后,我们援引IL来培训管理政策,这些政策只需要有限的国家信息,这些信息可以通过模仿以前的RL训练有素的政策在全面观察中轻松获得的国家(表示为部分观察)。我们在佛罗里达州使用玉米的案例研究进行实验,并将受过训练的政策与玉米管理指南进行比较。我们在全面观察和部分观察中训练有素的政策取得了更好的结果,从而获得更高的利润或类似的利润,而环境影响较小。此外,部分观察管理政策在使用易于使用的信息时直接在现实世界中部署。
translated by 谷歌翻译
与置换不变的代理框架的合作多元化学习(MARL)在现实世界应用中取得了巨大的经验成功。不幸的是,由于许多代理商的诅咒以及对现有作品中的关系推理的有限探索,对这个MARL问题的理论理解缺乏。在本文中,我们验证了变压器是否实现了复杂的关系推理,并提出和分析了与变压器近似器的无模型和基于模型的离线MARL算法。我们证明,基于模型和基于模型的算法的次级次数差距分别与代理数量分别独立于和对数,这减轻了许多试剂的诅咒。这些结果是变压器的新概括误差结合的结果以及对变压器系统动力学的最大似然估计(MLE)的新分析。我们的基于模型的算法是第一个明确利用代理的置换不变性的可证明有效的MARL算法。
translated by 谷歌翻译
创新者是有创造力的人,他们可以唤起代表创新组织主要引擎的开创性思想。过去的研究已广泛调查了谁是创新者以及他们在与工作有关的活动中的行为。在本文中,我们建议有必要分析创新者在其他情况下的行为,例如在非正式沟通空间中,在没有正式结构,规则和工作义务的情况下共享知识。利用通信和网络理论,我们分析了大型跨国公司的Intranet论坛上可用的38,000个帖子。由此,我们解释了创新者在社交网络行为和语言特征方面与其他员工的不同。通过文本挖掘,我们发现创新者编写更多,使用更复杂的语言,介绍新的概念/想法,并使用积极但基于事实的语言。了解创新者的行为和沟通如何支持想要促进创新的经理的决策过程。
translated by 谷歌翻译