Most multimodal multi-objective evolutionary algorithms (MMEAs) aim to find all global Pareto optimal sets (PSs) for a multimodal multi-objective optimization problem (MMOP). However, in real-world problems, decision makers (DMs) may be also interested in local PSs. Also, searching for both global and local PSs is more general in view of dealing with MMOPs, which can be seen as a generalized MMOP. In addition, the state-of-the-art MMEAs exhibit poor convergence on high-dimension MMOPs. To address the above two issues, in this study, a novel coevolutionary framework termed CoMMEA for multimodal multi-objective optimization is proposed to better obtain both global and local PSs, and simultaneously, to improve the convergence performance in dealing with high-dimension MMOPs. Specifically, the CoMMEA introduces two archives to the search process, and coevolves them simultaneously through effective knowledge transfer. The convergence archive assists the CoMMEA to quickly approaching the Pareto optimal front (PF). The knowledge of the converged solutions is then transferred to the diversity archive which utilizes the local convergence indicator and the $\epsilon$-dominance-based method to obtain global and local PSs effectively. Experimental results show that CoMMEA is competitive compared to seven state-of-the-art MMEAs on fifty-four complex MMOPs.
translated by 谷歌翻译
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the generalization of the global model on each client. To address this, we propose a method Federated learning with Adaptive Local Aggregation (FedALA) by capturing the desired information in the global model for client models in personalized FL. The key component of FedALA is an Adaptive Local Aggregation (ALA) module, which can adaptively aggregate the downloaded global model and local model towards the local objective on each client to initialize the local model before training in each iteration. To evaluate the effectiveness of FedALA, we conduct extensive experiments with five benchmark datasets in computer vision and natural language processing domains. FedALA outperforms eleven state-of-the-art baselines by up to 3.27% in test accuracy. Furthermore, we also apply ALA module to other federated learning methods and achieve up to 24.19% improvement in test accuracy.
translated by 谷歌翻译
Error correction in automatic speech recognition (ASR) aims to correct those incorrect words in sentences generated by ASR models. Since recent ASR models usually have low word error rate (WER), to avoid affecting originally correct tokens, error correction models should only modify incorrect words, and therefore detecting incorrect words is important for error correction. Previous works on error correction either implicitly detect error words through target-source attention or CTC (connectionist temporal classification) loss, or explicitly locate specific deletion/substitution/insertion errors. However, implicit error detection does not provide clear signal about which tokens are incorrect and explicit error detection suffers from low detection accuracy. In this paper, we propose SoftCorrect with a soft error detection mechanism to avoid the limitations of both explicit and implicit error detection. Specifically, we first detect whether a token is correct or not through a probability produced by a dedicatedly designed language model, and then design a constrained CTC loss that only duplicates the detected incorrect tokens to let the decoder focus on the correction of error tokens. Compared with implicit error detection with CTC loss, SoftCorrect provides explicit signal about which words are incorrect and thus does not need to duplicate every token but only incorrect tokens; compared with explicit error detection, SoftCorrect does not detect specific deletion/substitution/insertion errors but just leaves it to CTC loss. Experiments on AISHELL-1 and Aidatatang datasets show that SoftCorrect achieves 26.1% and 9.4% CER reduction respectively, outperforming previous works by a large margin, while still enjoying fast speed of parallel generation.
translated by 谷歌翻译
In tunnel boring machine (TBM) underground projects, an accurate description of the rock-soil types distributed in the tunnel can decrease the construction risk ({\it e.g.} surface settlement and landslide) and improve the efficiency of construction. In this paper, we propose an active learning framework, called AL-iGAN, for tunnel geological reconstruction based on TBM operational data. This framework contains two main parts: one is the usage of active learning techniques for recommending new drilling locations to label the TBM operational data and then to form new training samples; and the other is an incremental generative adversarial network for geological reconstruction (iGAN-GR), whose weights can be incrementally updated to improve the reconstruction performance by using the new samples. The numerical experiment validate the effectiveness of the proposed framework as well.
translated by 谷歌翻译
We propose eXtensible Prompt (X-Prompt) for prompting a large language model (LLM) beyond natural language (NL). X-Prompt instructs an LLM with not only NL but also an extensible vocabulary of imaginary words that are introduced to help represent what NL words hardly describe, allowing a prompt to be more descriptive. Like NL prompts, X-Prompt is out-of-distribution (OOD) robust, for which we propose context-guided learning with prompt augmentation to learn its imaginary words for general usability, enabling them to use in different prompt contexts for fine-grain specifications. The promising results of X-Prompt demonstrate its potential of approaching advanced interaction between humans and LLMs to bridge their communication gap.
translated by 谷歌翻译
Sampling diverse programs from a code language model and reranking with model likelihood is a popular method for code generation but it is prone to preferring degenerate solutions. Inspired by collaborative programming, we propose Coder-Reviewer reranking. We augment Coder language models from past work, which generate programs given language instructions, with Reviewer models, which evaluate the likelihood of the instruction given the generated programs. We perform an extensive study across six datasets with eight models from three model families. Experimental results show that Coder-Reviewer reranking leads to consistent and significant improvement (up to 17% absolute accuracy gain) over reranking with the Coder model only. When combined with executability filtering, Coder-Reviewer reranking can often outperform the minimum Bayes risk method. Coder-Reviewer reranking is easy to implement by prompting, can generalize to different programming languages, and works well with off-the-shelf hyperparameters.
translated by 谷歌翻译
We conduct a systematic study of backdoor vulnerabilities in normally trained Deep Learning models. They are as dangerous as backdoors injected by data poisoning because both can be equally exploited. We leverage 20 different types of injected backdoor attacks in the literature as the guidance and study their correspondences in normally trained models, which we call natural backdoor vulnerabilities. We find that natural backdoors are widely existing, with most injected backdoor attacks having natural correspondences. We categorize these natural backdoors and propose a general detection framework. It finds 315 natural backdoors in the 56 normally trained models downloaded from the Internet, covering all the different categories, while existing scanners designed for injected backdoors can at most detect 65 backdoors. We also study the root causes and defense of natural backdoors.
translated by 谷歌翻译
Learning from changing tasks and sequential experience without forgetting the obtained knowledge is a challenging problem for artificial neural networks. In this work, we focus on two challenging problems in the paradigm of Continual Learning (CL) without involving any old data: (i) the accumulation of catastrophic forgetting caused by the gradually fading knowledge space from which the model learns the previous knowledge; (ii) the uncontrolled tug-of-war dynamics to balance the stability and plasticity during the learning of new tasks. In order to tackle these problems, we present Progressive Learning without Forgetting (PLwF) and a credit assignment regime in the optimizer. PLwF densely introduces model functions from previous tasks to construct a knowledge space such that it contains the most reliable knowledge on each task and the distribution information of different tasks, while credit assignment controls the tug-of-war dynamics by removing gradient conflict through projection. Extensive ablative experiments demonstrate the effectiveness of PLwF and credit assignment. In comparison with other CL methods, we report notably better results even without relying on any raw data.
translated by 谷歌翻译
The recently developed discrete diffusion models perform extraordinarily well in the text-to-image task, showing significant promise for handling the multi-modality signals. In this work, we harness these traits and present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks using a single model, performing text-based, image-based, and even vision-language simultaneous generation. Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix. Moreover, we design a mutual attention module with fused embedding layer and a unified objective function to emphasise the inter-modal linkages, which are vital for multi-modality generation. Extensive experiments indicate that our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
translated by 谷歌翻译
Text-guided diffusion models have shown superior performance in image/video generation and editing. While few explorations have been performed in 3D scenarios. In this paper, we discuss three fundamental and interesting problems on this topic. First, we equip text-guided diffusion models to achieve $\textbf{3D-consistent generation}$. Specifically, we integrate a NeRF-like neural field to generate low-resolution coarse results for a given camera view. Such results can provide 3D priors as condition information for the following diffusion process. During denoising diffusion, we further enhance the 3D consistency by modeling cross-view correspondences with a novel two-stream (corresponding to two different views) asynchronous diffusion process. Second, we study $\textbf{3D local editing}$ and propose a two-step solution that can generate 360$^{\circ}$ manipulated results by editing an object from a single view. Step 1, we propose to perform 2D local editing by blending the predicted noises. Step 2, we conduct a noise-to-text inversion process that maps 2D blended noises into the view-independent text embedding space. Once the corresponding text embedding is obtained, 360$^{\circ}$ images can be generated. Last but not least, we extend our model to perform \textbf{one-shot novel view synthesis} by fine-tuning on a single image, firstly showing the potential of leveraging text guidance for novel view synthesis. Extensive experiments and various applications show the prowess of our 3DDesigner. The project page is available at https://3ddesigner-diffusion.github.io/.
translated by 谷歌翻译