在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
自Covid-19大流行病开始以来,疫苗一直是公共话语中的重要话题。疫苗周围的讨论被两极分化,因为有些人认为它们是结束大流行的重要措施,而另一些人则犹豫不决或发现它们有害。这项研究调查了与Twitter上的Covid-19疫苗有关的帖子,并着重于对疫苗有负姿态的帖子。收集了与COVID-19疫苗相关的16,713,238个英文推文的数据集,收集了涵盖从2020年3月1日至2021年7月31日的该期间。我们使用Scikit-Learn Python库来应用支持向量机(SVM)分类器针对Covid-19疫苗的推文具有负姿态。总共使用了5,163个推文来训练分类器,其中有2,484个推文由我们手动注释并公开提供。我们使用Berttopic模型来提取和调查负推文中讨论的主题以及它们如何随时间变化。我们表明,随着疫苗的推出,对COVID-19疫苗的负面影响随时间而下降。我们确定了37个讨论主题,并随着时间的推移介绍了各自的重要性。我们表明,流行的主题包括阴谋讨论,例如5G塔和微芯片,但还涉及涉及疫苗接种安全性和副作用以及对政策的担忧。我们的研究表明,即使是不受欢迎的观点或阴谋论,与广受欢迎的讨论主题(例如Covid-19疫苗)配对时,也会变得广泛。了解问题和讨论的主题以及它们如何随着时间的变化对于政策制定者和公共卫生当局提供更好和时间的信息和政策,以促进未来类似危机的人口接种。
translated by 谷歌翻译