校准仍然是脑电脑接口(BCI)中用户体验的重要问题。甚至在开始使用BCI之前,常见的实验设计往往涉及提高认知疲劳的冗长的训练期。通过依赖于先进的机器学习技术,例如转移学习,可以减少或抑制这种依赖的校准。在Riemannian BCI上建立,我们提出了一种简单有效的方案,可以在不同主题记录的数据上培训分类器,以减少校准,同时保持良好的性能。本文的主要新颖性是提出一种独特的方法,可以应用于非常不同的范式。为了展示这种方法的稳健性,我们对三个BCI范例的多个数据集进行了元分析:事件相关的电位(P300),电机图像和SSVEP。依靠MoABB开源框架来确保实验的再现性和统计分析,结果清楚地表明,该方法可以应用于任何类型的BCI范例,并且在大多数情况下都可以显着提高分级性可靠性。我们指出了一些关键特征,以进一步提高转移学习方法。
translated by 谷歌翻译
功能连接是研究大脑振荡活动的关键方法,以便为神经元相互作用的潜在动态提供重要见解,并且主要用于脑活动分析。建立脑电脑界面信息几何的进步,我们提出了一种新颖的框架,它结合了功能连接估计和基于协方差的管道来对精神状态进行分类,例如电机图像。针对每个估算器培训的riemannian分类器,并且集合分类器将决策组合在每个特征空间中。提供了对功能连接估计器的全面评估,并在不同的条件和数据集上评估最佳表演管道,称为岩酮。使用Meta分析在数据集中聚合结果,FUCONE比所有最先进的方法更好地执行。性能增益主要是对特征空间的改进的改进的改进,增加了集合分类器相对于和内部主题间变异性的鲁棒性。
translated by 谷歌翻译
本文介绍了我们在Biocreative VII的Covid-19文学注释任务上提交。我们提出了一种利用全球非最佳权重的知识的方法,通常被拒绝,以构建每个标签的丰富代表性。我们所提出的方法包括两个阶段:(1)培训数据的各种初始化的召唤,具有弱训练的权重,(2)基于BERT和Roberta Embeddings的异构词汇模型的堆叠。这些弱洞察的聚合比经典全球有效的模型更好。目的是将知识丰富的蒸馏到更简单和更轻的模型。我们的系统获取基于实例的F1,为92.96和基于标签的微F1,为91.35。
translated by 谷歌翻译
在本文中,我们组合了两个独立的检测方法来识别假新闻:算法Vago使用语义规则与NLP技术相结合,测量文本中的模糊和主体性,而分类器假CLF依赖于卷积神经网络分类和监督深度学习将文本分类为偏见或合法。我们比较四个语料库的两种方法的结果。我们在vago获得的模糊和主观性措施之间找到了积极的相关性,以及由假CLF偏向的文本分类。比较产生互利:Vago有助于解释假CLF的结果。相反,Fake-CLF帮助我们证实并扩展Vago的数据库。使用两个互补技术(以基于规则的VS数据驱动)证明了识别假新闻的挑战性问题。
translated by 谷歌翻译
工业机器人的机器人编程方法是耗时的,并且通常需要运营商在机器人和编程中具有知识。为了降低与重新编程相关的成本,最近已经提出了使用增强现实的各种接口,为用户提供更直观的手段,可以实时控制机器人并在不必编码的情况下编程它们。但是,大多数解决方案都要求操作员接近真正的机器人的工作空间,这意味着由于安全危险而从生产线上移除它或关闭整个生产线。我们提出了一种新颖的增强现实界面,提供了用户能够建模工作空间的虚拟表示,该工作空间可以被保存和重复使用,以便编程新任务或调整旧任务,而无需与真正的机器人共同定位。与以前的接口类似,操作员随后可以通过操纵虚拟机器人来实时地控制机器人任务或控制机器人。我们评估所提出的界面与用户学习的直观和可用性,其中18名参与者为拆卸任务编写了一个机器人操纵器。
translated by 谷歌翻译
一般照明条件中单眼图像的强大面部重建是具有挑战性的。用于使用微弱渲染的深度神经网络编码器结合的方法打开了几何,照明和反射的非常快速的单眼重建的路径。它们也可以通过自我监督的方式培训,以增加鲁棒性和更好的泛化。然而,基于光栅化的图像形成模型以及底层场景参数化,将它们限制在Lambertian的反射率和差的形状细节中。最近,在基于经典优化的框架内引入了用于单眼脸部重建的射线跟踪,并实现最先进的结果。然而,基于优化的方法本质上很慢,缺乏鲁棒性。在本文中,我们在上述方法上建立了我们的工作,并提出了一种新的方法,大大提高了一般场景中的重建质量和鲁棒性。我们通过将CNN编码器与可分散的射线示踪剂组合来实现这一点,这使得我们能够将重建基于更高级的个性化漫射和镜面,更复杂的照明模型和自阴影的合理表示。这使得即使在难以照明的场景中,也可以在重建的形状,外观和照明中进行大跃进。通过一致的面部属性重建,我们的方法导致实际应用,例如致密和自阴影去除。与最先进的方法相比,我们的结果表明了提高了方法的准确性和有效性。
translated by 谷歌翻译
在本文中,我们提出了一种新的端到端方法,以优化能量性能以及大型建筑物的舒适性和空气质量,而无需任何装修工作。我们介绍了基于经常性神经网络的元模型,并训练了使用从模拟程序采样的数据库预测一般大类建筑物的行为。然后将该元模型部署在不同的框架中,并且使用两个真实建筑的特定数据校准其参数。通过使用CMA-ES算法比较从传感器获得的真实数据的比较来估计参数,通过使用CMA-ES算法,衍生免费优化过程。然后,使用NSGA-II多目标优化过程保持目标热舒适度和空气质量的同时优化能量消耗。数值实验说明了该元模型如何确保能效显着增益,高达近10%,同时计算比数值模型更具吸引力,并且足够灵活地适应若干类型的建筑物。
translated by 谷歌翻译