我们提出了一个新型混合动力系统(硬件和软件),该系统载有微型无人接地车辆(MiniUGV),以执行复杂的搜索和操纵任务。该系统利用异质机器人来完成使用单个机器人系统无法完成的任务。它使无人机能够探索一个隐藏的空间,并具有狭窄的开口,Miniugv可以轻松进入并逃脱。假定隐藏的空间可用于MiniUGV。 MiniUGV使用红外(IR)传感器和单眼相机在隐藏空间中搜索对象。所提出的系统利用摄像机的更广阔的视野(FOV)以及对象检测算法的随机性引导隐藏空间中的MiniUGV以找到对象。找到对象后,MiniUGV使用视觉伺服抓住它,然后返回其起点,从无人机将其缩回并将物体运送到安全的地方。如果在隐藏空间中没有发现对象,则无人机继续进行空中搜索。束缚的MiniUGV使无人机具有超出其影响力并执行搜索和操纵任务的能力,而该任务对于任何机器人都无法单独进行。该系统具有广泛的应用,我们通过重复实验证明了其可行性。
translated by 谷歌翻译
Successful identification of blood vessel blockage is a crucial step for Alzheimer's disease diagnosis. These blocks can be identified from the spatial and time-depth variable Two-Photon Excitation Microscopy (TPEF) images of the brain blood vessels using machine learning methods. In this study, we propose several preprocessing schemes to improve the performance of these methods. Our method includes 3D-point cloud data extraction from image modality and their feature-space fusion to leverage complementary information inherent in different modalities. We also enforce the learned representation to be sequence-order invariant by utilizing bi-direction dataflow. Experimental results on The Clog Loss dataset show that our proposed method consistently outperforms the state-of-the-art preprocessing methods in stalled and non-stalled vessel classification.
translated by 谷歌翻译
Non-negative matrix factorization is a popular unsupervised machine learning algorithm for extracting meaningful features from data which are inherently non-negative. However, such data sets may often contain privacy-sensitive user data, and therefore, we may need to take necessary steps to ensure the privacy of the users while analyzing the data. In this work, we focus on developing a Non-negative matrix factorization algorithm in the privacy-preserving framework. More specifically, we propose a novel privacy-preserving algorithm for non-negative matrix factorisation capable of operating on private data, while achieving results comparable to those of the non-private algorithm. We design the framework such that one has the control to select the degree of privacy grantee based on the utility gap. We show our proposed framework's performance in six real data sets. The experimental results show that our proposed method can achieve very close performance with the non-private algorithm under some parameter regime, while ensuring strict privacy.
translated by 谷歌翻译
肺癌治疗中有针对性疗法的标准诊断程序涉及组织学亚型和随后检测关键驱动因素突变,例如EGFR。即使分子分析可以发现驱动器突变,但该过程通常很昂贵且耗时。深度学习的图像分析为直接从整个幻灯片图像(WSIS)直接发现驱动器突变提供了一种更经济的替代方法。在这项工作中,我们使用具有弱监督的自定义深度学习管道来鉴定苏木精和曙红染色的WSI的EGFR突变的形态相关性,此外还可以检测到肿瘤和组织学亚型。我们通过对两个肺癌数据集进行严格的实验和消融研究来证明管道的有效性-TCGA和来自印度的私人数据集。通过管道,我们在肿瘤检测下达到了曲线(AUC)的平均面积(AUC),在TCGA数据集上的腺癌和鳞状细胞癌之间的组织学亚型为0.942。对于EGFR检测,我们在TCGA数据集上的平均AUC为0.864,印度数据集的平均AUC为0.783。我们的关键学习点包括以下内容。首先,如果要在目标数据集中微调特征提取器,则使用对组织学训练的特征提取器层没有特别的优势。其次,选择具有较高细胞的斑块,大概是捕获肿瘤区域,并不总是有帮助的,因为疾病类别的迹象可能存在于肿瘤 - 肿瘤的基质中。
translated by 谷歌翻译
基于变压器神经网络体系结构的自然语言处理(NLP)的令人印象深刻的结果激发了研究人员探索视线离线增强学习(RL)作为通用序列建模问题。基于此范式的最新著作已获得最新的结果,其中一些主要确定性的离线Atari和D4RL基准。但是,由于这些方法将国家和行动共同模拟单一的测序问题,因此它们努力将政策和世界动态对回报的影响解散。因此,在对抗或随机环境中,这些方法导致过度乐观的行为,在自主驾驶(例如自主驾驶)中可能是危险的。在这项工作中,我们提出了一种通过明确解开政策和世界模型来解决这种乐观偏见的方法,该方法使我们在测试时可以搜索对环境中多个可能的未来的稳健性的策略。我们在模拟中的各种自动驾驶任务上展示了我们的方法的出色性能。
translated by 谷歌翻译
机器学习的进步为低端互联网节点(例如微控制器)带来了新的机会,将情报带入了情报。传统的机器学习部署具有较高的记忆力,并计算足迹阻碍了其在超资源约束的微控制器上的直接部署。本文强调了为MicroController类设备启用机载机器学习的独特要求。研究人员为资源有限的应用程序使用专门的模型开发工作流程,以确保计算和延迟预算在设备限制之内,同时仍保持所需的性能。我们表征了微控制器类设备的机器学习模型开发的广泛适用的闭环工作流程,并表明几类应用程序采用了它的特定实例。我们通过展示多种用例,将定性和数值见解介绍到模型开发的不同阶段。最后,我们确定了开放的研究挑战和未解决的问题,要求仔细考虑前进。
translated by 谷歌翻译
尽管U-NET体系结构已广泛用于分割医学图像,但我们解决了这项工作中的两个缺点。首先,当分割目标区域的形状和尺寸显着变化时,香草U-NET的精度会降低。即使U-NET已经具有在各种尺度上分析特征的能力,我们建议在U-NET编码器的每个卷积模块中明确添加多尺度特征图,以改善组织学图像的分割。其次,当监督学习的注释嘈杂或不完整时,U-NET模型的准确性也会受到影响。由于人类专家在非常精确,准确地识别和描述所有特定病理的所有实例的固有困难,因此可能发生这种情况。我们通过引入辅助信心图来应对这一挑战,该辅助信心图较少强调给定目标区域的边界。此外,我们利用深网的引导属性智能地解决了丢失的注释问题。在我们对乳腺癌淋巴结私有数据集的实验中,主要任务是分割生发中心和窦性组织细胞增多症,我们观察到了基于两个提出的增强的U-NET基线的显着改善。
translated by 谷歌翻译
有效的人类学习取决于广泛的教育材料,与学习者目前对该主题保持一致。虽然互联网彻底改变了人类的学习或教育,但仍存在大量资源可访问性障碍。即,过剩的在线信息可以使其充满努力导航和发现高质量的学习材料。在本文中,我们提出了教育资源发现(ERD)管道,用于为新颖域自动化Web资源发现。管道由三个主要步骤组成:数据收集,功能提取和资源分类。我们从一个已知的源域开始,通过传输学习在两个看不见的目标域上进行资源发现。我们首先从一组种子文档中收集频繁查询并在网上搜索以获取候选资源,例如讲座幻灯片和介绍博客帖子。然后我们介绍一个小说预用信息检索深神经网络模型,查询文件屏蔽语言建模(QD-MLM),以提取这些候选​​资源的深度特征。我们应用基于树的分类器来决定候选人是否是一个积极的学习资源。当在两个类似但新的靶域评估时,管道在评估时实现0.94和0.82的F1分数。最后,我们展示了该管道如何使应用程序有益于应用:调查的领先段落生成。这是据我们所知,这是考虑各种网络资源的研究。我们还释放了39,728个手动标记的Web资源的语料库,以及来自NLP,计算机视觉(CV)和统计信息(统计数据)的659个查询。
translated by 谷歌翻译
科学主题的分类方案概述了其知识体系。它还可以用于促进访问研究文章和与受试者相关的其他材料。例如,ACM计算分类系统(CCS)用于ACM数字库搜索界面以及索引计算机科学论文。我们观察到,计算语言学(CL)和自然语言处理(NLP),不存在综合分类系统等CCS或数学主题分类(MSC)。我们提出了一个分类方案 - 基于在这一主题的77个大学课程的在线讲座的分析,Cl / NLP的Clicker。目前拟议的分类学包括334个主题,并侧重于CL / NLP的教育方面;它主要是基于,但不是完全,在NLP课程的讲义中。我们讨论这种分类系统如何帮助各种现实世界应用,包括辅导平台,资源检索,资源推荐,先决条件链学习和调查生成。
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译