每年在美国犯下数十个恐怖袭击,往往会导致死亡和其他重大损害。在更好地理解和减轻这些攻击的结束时,我们展示了一组机器学习模型,用于从本地化的新闻数据中学习,以预测恐怖主义攻击是否将在给定的日历日期和给定状态上发生。最佳模型 - 一种随机森林,了解特征空间的新型可变长度移动平均表示 - 在接收器经营特征下实现的地区分数为$> .667美元,这是由恐怖主义影响最多的五个州的四个国家在2015年和2018年之间。我们的主要发现包括将恐怖主义建模为一系列独立事件,而不是作为一个持续的过程,是一种富有成果的方法 - 尤其是当事件稀疏和异常时。此外,我们的结果突出了对位置之间的差异的本地化模型的需求。从机器学习的角度来看,我们发现随机森林模型在我们的多模式,嘈杂和不平衡数据集上表现出几种深刻的模型,从而展示了我们的新颖特征表示方法在这种情况下的功效。我们还表明,其预测是对攻击之间的时间差距和观察到攻击特征的预测相对稳健。最后,我们分析了限制模型性能的因素,包括嘈杂的特征空间和少量可用数据。这些贡献为利用机器学习在美国及以后的恐怖主义努力中提供了重要的基础。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
在线模仿学习是如何最好地访问环境或准确的模拟器的问题的问题。先前的工作表明,在无限的样本制度中,匹配的确切力矩达到了与专家政策的价值等效性。但是,在有限的样本制度中,即使没有优化错误,经验差异也会导致性能差距,该差距以$ h^2 / n $的行为克隆缩放,在线时刻$ h / \ sqrt {n} $匹配,其中$ h $是地平线,$ n $是专家数据集的大小。我们介绍了重播估算的技术以减少这种经验差异:通过反复在随机模拟器中执行缓存的专家动作,我们计算了一个更平滑的专家访问分布估算以匹配的。在存在一般函数近似的情况下,我们证明了一个元定理,可以减少离线分类参数估计误差的方法差距(即学习专家策略)。在表格设置或使用线性函数近似中,我们的元定理表明,我们方法产生的性能差距达到了最佳$ \ widetilde {o} \ left(\ min(\ min({h^h^{3/2}}}} / {n} ,{h} / {\ sqrt {n}} \ right)$依赖关系,在与先前的工作相比明显弱的假设下。我们在多个连续的控制任务上实施了多个方法的多次实例化,并发现我们能够显着提高策略绩效跨各种数据集尺寸。
translated by 谷歌翻译
数据驱动模型发现中的中央挑战是存在隐藏或潜伏的变量,这些变量不会直接测量,而是动态重要。 TAKENS的定理提供了在可能随时间延迟信息中增加这些部分测量的条件,导致吸引物,这是对原始全状态系统的扩散逻辑。然而,回到原始吸引子的坐标变换通常是未知的,并且学习嵌入空间中的动态仍然是几十年的开放挑战。在这里,我们设计自定义深度AutoEncoder网络,以学习从延迟嵌入空间的坐标转换到一个新的空间,其中可以以稀疏,封闭的形式表示动态。我们在Lorenz,R \“Ossler和Lotka-Volterra系统上,从单个测量变量的学习动态展示了这种方法。作为一个具有挑战性的例子,我们从混乱的水车视频中提取的单个标量变量中学到一个洛伦兹类似物得到的建模框架结合了深入的学习来揭示可解释建模的非线性动力学(SINDY)的揭示有效坐标和稀疏识别。因此,我们表明可以同时学习闭合模型和部分的坐标系观察到的动态。
translated by 谷歌翻译
在指纹识别领域工作的研究人员的主要障碍是缺乏公开的,大规模的指纹数据集。确实存在的公开数据集包含每个手指的少数身份和印象。这限制了关于许多主题的研究,包括例如,使用深网络来学习固定长度指纹嵌入。因此,我们提出了Printsgan,一种能够产生独特指纹的合成指纹发生器以及给定指纹的多个印象。使用Printsgan,我们合成525,000个指纹的数据库(35,000个不同的手指,每次有15个印象)。接下来,我们通过训练深网络来提取来自指纹的固定长度嵌入的固定长度来显示Printsgan生成的数据集的实用程序。特别是,对我们的合成指纹培训并进行微调的嵌入式模型和在NIST SD302的25,000个印刷品上进行微调)在NIST SD4数据库上获得87.03%的焦点为87.03%(一个升压)当仅在NIST SD302上培训时,来自Tar = 73.37%)。普遍的合成指纹产生方法不会使I)缺乏现实主义或ii)无法产生多个印象。我们计划向公众释放我们的合成指纹数据库。
translated by 谷歌翻译
我们建议展开沉浸式远程呈现机器人的用户所经历的轮换,以改善用户的舒适度并减少VR疾病。通过沉浸式远程呈现,我们指的是移动机器人顶部的360 \ TextDegree〜相机的情况将视频和音频流入遥远用户遥远的远程用户佩戴的头戴式展示中。因此,它使得用户能够在机器人的位置处存在,通过转动头部并与机器人附近的人进行通信。通过展开相机框架的旋转,当机器人旋转时,用户的观点不会改变。用户只能通过在其本地设置中物理旋转来改变她的观点;由于没有相应的前庭刺激的视觉旋转是VR疾病的主要来源,预计用户的物理旋转将减少VR疾病。我们实现了展开遍历虚拟环境的模拟机器人的旋转,并将用户学习(n = 34)进行比较,将展开旋转与机器人转弯时的ViewPoint转向。我们的研究结果表明,用户发现更优选且舒适的展开转动,并降低了他们的VR疾病水平。我们还进一步提出了关于用户路径集成功能,观看方向和机器人速度和距离的主观观察到模拟人员和对象的结果。
translated by 谷歌翻译
在医学成像领域越来越多地探索联合学习,以培训在不同数据中心分布在不同数据中心的大规模数据集上的深入学习模型,同时通过避免转移敏感患者信息来保护隐私。在此稿件中,我们在多域的多域的多任务设置中探索联合学习,其中不同的参与节点可以包含来自不同域的数据集,并训练以解决不同的任务。我们评估了两种不同实验设置的对象检测和分段任务的跨域联合学习:多模态和多器官。我们对跨领域联合学习框架的实验的结果非常令人鼓舞,对于器官定位,0.79的重叠相似性和0.65用于病变分割。我们的结果展示了在不共享来自不同域的数据的多域,多任务深度学习模型中联合学习的潜力。
translated by 谷歌翻译
在这项工作中,我们介绍了一种新的长尾识别战略,通过无训练知识转移来解决尾课的几次射门问题。我们的目标是将从信息丰富的常见课程获得的知识转移到语义上类似,但数据饥饿的罕见课程,以获得更强的尾级陈述。我们利用类原型和学习余弦分类器在特征空间中提供两个不同,互补的类集群中心的不同互补表示,并使用注意机制从常见类别中选择和重新测试学习的分类器特征,以获得更高质量的珍稀类表示。我们的知识转移过程自由培训,减少过度风险,并可能够为新课程提供持续的分类器。实验表明,我们的方法可以在罕见的阶级提高显着的性能,同时保持稳健的普通类性能,优于直接可比的最先进模型。
translated by 谷歌翻译
自动化数据驱动的建模,直接发现系统的管理方程的过程越来越多地用于科学界。 Pysindy是一个Python包,提供用于应用非线性动力学(SINDY)方法的稀疏识别到数据驱动模型发现的工具。在Pysindy的这一主要更新中,我们实现了几种高级功能,使得能够从嘈杂和有限的数据中发现更一般的微分方程。延长候选术语库,用于识别致动系统,部分微分方程(PDE)和隐式差分方程。还实施了包括Sindy和合奏技术的整体形式的强大配方,以提高现实世界数据的性能。最后,我们提供了一系列新的优化算法,包括多元稀疏的回归技术和算法来强制执行和促进不等式约束和稳定性。这些更新在一起,可以在文献中尚未报告的全新SINDY模型发现能力,例如约束PDE识别和使用不同稀疏的回归优化器合并。
translated by 谷歌翻译