在这项工作中,我们详细描述了深度学习和计算机视觉如何帮助检测AirTender系统的故障事件,AirTender系统是售后摩托车阻尼系统组件。监测飞行员运行的最有效方法之一是在其表面上寻找油污渍。从实时图像开始,首先在摩托车悬架系统中检测到Airtender,然后二进制分类器确定Airtender是否在溢出油。该检测是在YOLO5架构的帮助下进行的,而分类是在适当设计的卷积神经网络油网40的帮助下进行的。为了更清楚地检测油的泄漏,我们用荧光染料稀释了荧光染料,激发波长峰值约为390 nm。然后用合适的紫外线LED照亮飞行员。整个系统是设计低成本检测设置的尝试。船上设备(例如迷你计算机)被放置在悬架系统附近,并连接到全高清摄像头框架架上。板载设备通过我们的神经网络算法,然后能够将AirTender定位并分类为正常功能(非泄漏图像)或异常(泄漏图像)。
translated by 谷歌翻译
在线社交网络由于其在低质量信息的传播中的作用而积极参与删除恶意社交机器人。但是,大多数现有的机器人检测器都是监督分类器,无法捕获复杂机器人的不断发展的行为。在这里,我们提出了Mulbot,这是一种基于多元时间序列(MTS)的无监督的机器人检测器。我们第一次利用从用户时间表中提取的多维时间功能。我们使用LSTM AutoCododer管理多维性,该模块将MTS投射在合适的潜在空间中。然后,我们对此编码表示形式执行聚类步骤,以识别非常相似用户的密集组 - 一种已知的自动化迹象。最后,我们执行一项二进制分类任务,以达到F1得分$ = 0.99 $,表现优于最先进的方法(F1分数$ \ le 0.97 $)。 Mulbot不仅在二进制分类任务中取得了出色的成果,而且我们还在一项新颖且实际上相关的任务中证明了它的优势:检测和分离不同的僵尸网络。在此多级分类任务中,我们实现了F1得分$ = 0.96 $。我们通过估计模型中使用的不同特征的重要性,并通过评估Mulbot推广到新看不见的机器人的能力,从而提出了解决监督机器人探测器的概括性缺陷的解决方案。
translated by 谷歌翻译
该技术报告描述了在Robocup SPL(Mario)中计算视觉统计的模块化且可扩展的体系结构,该结构在Robocup 2022的SPL Open Research Challenge期间提出,该挑战在曼谷(泰国)举行。马里奥(Mario)是一个开源的,可用的软件应用程序,其最终目标是为Robocup SPL社区的发展做出贡献。Mario带有一个GUI,该GUI集成了多个机器学习和基于计算机视觉的功能,包括自动摄像机校准,背景减法,同型计算,玩家 +球跟踪和本地化,NAO机器人姿势估计和跌落检测。马里奥(Mario)被排名第一。1在开放研究挑战中。
translated by 谷歌翻译
部署AI驱动的系统需要支持有效人类互动的值得信赖的模型,超出了原始预测准确性。概念瓶颈模型通过在类似人类的概念的中间级别调节分类任务来促进可信度。这使得人类干预措施可以纠正错误预测的概念以改善模型的性能。但是,现有的概念瓶颈模型无法在高任务准确性,基于概念的强大解释和对概念的有效干预措施之间找到最佳的妥协,尤其是在稀缺完整和准确的概念主管的现实情况下。为了解决这个问题,我们提出了概念嵌入模型,这是一种新型的概念瓶颈模型,它通过学习可解释的高维概念表示形式而超出了当前的准确性-VS解关性权衡。我们的实验表明,嵌入模型(1)达到更好或竞争性的任务准确性W.R.T. W.R.T.没有概念的标准神经模型,(2)提供概念表示,以捕获有意义的语义,包括其地面真相标签,(3)支持测试时间概念干预措施,其在测试准确性中的影响超过了标准概念瓶颈模型,以及(4)规模对于稀缺的完整概念监督的现实条件。
translated by 谷歌翻译
由于技术成本的降低和卫星发射的增加,卫星图像变得越来越流行和更容易获得。除了提供仁慈的目的外,还可以出于恶意原因(例如错误信息)使用卫星数据。事实上,可以依靠一般图像编辑工具来轻松操纵卫星图像。此外,随着深层神经网络(DNN)的激增,可以生成属于各种领域的现实合成图像,与合成生成的卫星图像的扩散有关的其他威胁正在出现。在本文中,我们回顾了关于卫星图像的产生和操纵的最新技术(SOTA)。特别是,我们既关注从头开始的合成卫星图像的产生,又要通过图像转移技术对卫星图像进行语义操纵,包括从一种类型的传感器到另一种传感器获得的图像的转换。我们还描述了迄今已研究的法医检测技术,以对合成图像伪造进行分类和检测。虽然我们主要集中在法医技术上明确定制的,该技术是针对AI生成的合成内容物的检测,但我们还审查了一些用于一般剪接检测的方法,这些方法原则上也可以用于发现AI操纵图像
translated by 谷歌翻译
主动推断是一种特别是理解大脑的第一原理方法,通常是一种有情的药物,而自由能的单一命令。因此,它通过定义代理的生成模型并推断模型参数,动作和隐藏的状态信念,为对人工智能代理建模提供了一个计算帐户。但是,生成模型和隐藏状态空间结构的确切规范留给了实验者,其设计选择会影响代理的产生行为。最近,已经提出了深度学习方法,以从数据中学习隐藏的状态空间结构,从而从这项乏味的设计任务中减轻了实验者,但导致了一个纠缠的,不可解剖的状态空间。在本文中,我们假设这样一种学识渊博的,纠缠的状态空间并不一定会在自由能中产生最佳模型,并且在状态空间中执行不同的因素可以产生较低的模型复杂性。特别是,我们考虑了3D对象表示的问题,并专注于Shapenet数据集的不同实例。我们提出了一个分配对象形状,姿势和类别的模型,同时仍使用深层神经网络学习每个因素的表示形式。我们表明,当活跃代理在达到首选观察方面采用时,具有最佳分离属性的模型在采用时表现最好。
translated by 谷歌翻译
计算机视觉(CV)是涵盖广泛应用的人工智能中的一个重要领域。图像分析是CV的主要任务,目的是提取,分析和理解图像的视觉内容。但是,由于许多因素,图像之间的较高变化,高维度,域专业知识要求和图像扭曲,因此与图像相关的任务非常具有挑战性。进化计算方法(EC)方法已被广泛用于图像分析,并取得了重大成就。但是,没有对现有的EC方法进行图像分析的全面调查。为了填补这一空白,本文提供了一项全面的调查,涵盖了重要的图像分析任务的所有基本EC方法,包括边缘检测,图像分割,图像特征分析,图像分类,对象检测等。这项调查旨在通过讨论不同方法的贡献并探讨如何以及为什么将EC用于简历和图像分析,以更好地了解进化计算机视觉(ECV)。还讨论并总结了与该研究领域相关的应用,挑战,问题和趋势,以提供进一步的指南和未来研究的机会。
translated by 谷歌翻译
尽管自我监督学习(SSL)方法取得了经验成功,但尚不清楚其表示的哪些特征导致了高下游精度。在这项工作中,我们表征了SSL表示应该满足的属性。具体而言,我们证明了必要和充分的条件,因此,对于给出的数据增强的任何任务,在该表示形式上训练的所需探针(例如,线性或MLP)具有完美的准确性。这些要求导致一个统一的概念框架,用于改善现有的SSL方法并得出新方法。对于对比度学习,我们的框架规定了对以前的方法(例如使用不对称投影头)的简单但重大改进。对于非对比度学习,我们使用框架来得出一个简单新颖的目标。我们所得的SSL算法在标准基准测试上的表现优于基线,包括Imagenet线性探测的SHAV+多螺旋桨。
translated by 谷歌翻译
由于全景分割为输入中的每个像素提供了一个预测,因此,非标准和看不见的对象系统地导致了错误的输出。但是,在关键的环境中,针对分发样本的鲁棒性和角案件对于避免危险行为至关重要,例如忽略动物或道路上的货物丢失。由于驾驶数据集不能包含足够的数据点来正确采样基础分布的长尾巴,因此方法必须处理未知和看不见的方案才能安全部署。以前的方法是通过重新识别已经看到未标记的对象来针对此问题的一部分。在这项工作中,我们扩大了提出整体分割的范围:一项任务,以识别和将看不见的对象分为实例,而无需从未知数中学习,同时执行已知类别的全面分割。我们用U3HS解决了这个新问题,U3HS首先将未知数视为高度不确定的区域,然后将相应的实例感知嵌入到各个对象中。通过这样做,这是第一次使用未知对象进行综合分割,我们的U3HS未接受未知数据的训练,因此使对象类型的设置不受限制,并允许对整体场景理解。在两个公共数据集上进行了广泛的实验和比较,即CityScapes和作为转移的丢失和发现,证明了U3HS在挑战性的整体分段任务中的有效性,并具有竞争性的封闭式全盘分段性能。
translated by 谷歌翻译
在处理多点测量时,即传统的黑盒优化方法效率低下,即,当控制域中的每个查询需要在次级域中的一组测量以计算目标时。在粒子加速器中,四极扫描的发射率调整是具有多点测量的优化示例。尽管发射率是高亮度机器(包括X射线激光器和线性碰撞者)的性能的关键参数,但综合优化通常受到调整所需的时间的限制。在这里,我们将最近提供的贝叶斯算法执行(BAX)扩展到具有多点测量的优化任务。 BAX通过在关节控制测量域中选择和建模各个点来实现样品效率。我们将BAX应用于Linac相干光源(LCLS)和晚期加速器实验测试II(Facet-II)粒子加速器的设施。在LCLS模拟环境中,我们表明BAX的效率提高了20倍,同时与传统优化方法相比,噪声也更强。此外,我们在LCLS和facet-II上运行了Bax,与Facet-II的手工调整发射率相匹配,并获得了比LCLS在LCLS上获得的最佳发射率低24%。我们预计我们的方法很容易适应其他类型的优化问题,这些优化问题涉及科学仪器中常见的多点测量。
translated by 谷歌翻译