我们呈现了对比邻域对准(CNA),一种歧管学习方法来维持学习特征的拓扑,由此映射到源(教师)模型的附近表示的数据点也被目标(学生)模型映射到邻居。目标模型旨在模拟使用对比损耗来模拟源代表空间的局部结构。CNA是一种无人监督的学习算法,不需要对各个样本的地面真理标签。CNA在三种情况下示出:歧管学习,其中模型在尺寸减小空间中保持原始数据的本地拓扑;模型蒸馏,其中小学生模型培训以模仿更大的老师;和遗留模型更新,其中旧模型被更强大的更强大的型号。实验表明,CNA能够在高维空间中捕获歧管,并与其域中的竞争方法相比提高性能。
translated by 谷歌翻译
我们研究了对差距估计任务的深层立体声匹配网络对抗图像对抗的影响。我们介绍了一种方法来制作一组扰动,当添加到数据集中的任何立体声图像对时,可以欺骗立体声网络,从而显着改变感知场景几何形状。我们的扰动图像是“通用”的,因为它们不仅损坏了它们在优化的数据集上的网络上的估计,而且还概括到不同数据集中不同架构的立体网络。我们在多个公共基准数据集中评估我们的方法,并显示我们的扰动可以将最先进的立体网络的D1错误(类似于愚蠢)增加1%至高达87%。我们调查扰动对估计场景几何的影响,并确定最脆弱的对象类。我们对左右图像之间的注册点激活的分析导致我们发现某些架构组件,即可变形卷积和明确匹配,可以增加对对手的鲁棒性。我们证明,通过简单地使用这些组件设计网络,可以将对手的效果降低到60.5%,这竞争于网络的稳健性与昂贵的对抗性数据增强进行了微调。
translated by 谷歌翻译
我们介绍了一种计算关于数据集的学习任务的导数的方法。学习任务是从训练设置到验证错误的函数,可以由培训的深神经网络(DNN)表示。 “数据集导数”是一个线性运算符,围绕培训的模型计算,它通知每个训练样本的权重的扰动如何影响验证误差,通常在单独的验证数据集上计算。我们的方法,DIVA(可微分验证)铰接在预先训练的DNN周围的休假交叉验证误差的闭合形式微分表达上。这种表达构成数据集衍生物。 Diva可用于数据集自动策策,例如用错误的注释删除样本,使用其他相关样本增强数据集或重新平衡。更一般地,DIVA可用于优化数据集,以及模型的参数,作为培训过程的一部分,而无需单独的验证数据集,与AutomL的双层优化方法不同。为了说明DIVA的灵活性,我们向样本自动策展任务报告实验,如异常值拒绝,数据集扩展和多模态数据的自动聚合。
translated by 谷歌翻译
我们提出了一个新的框架,在增强的自然语言(TANL)之间的翻译,解决了许多结构化预测语言任务,包括联合实体和关系提取,嵌套命名实体识别,关系分类,语义角色标记,事件提取,COREREFED分辨率和对话状态追踪。通过培训特定于特定于任务的鉴别分类器来说,我们将其作为一种在增强的自然语言之间的翻译任务,而不是通过培训问题,而不是解决问题,而是可以轻松提取任务相关信息。我们的方法可以匹配或优于所有任务的特定于任务特定模型,特别是在联合实体和关系提取(Conll04,Ade,NYT和ACE2005数据集)上实现了新的最先进的结果,与关系分类(偶尔和默示)和语义角色标签(Conll-2005和Conll-2012)。我们在使用相同的架构和超参数的同时为所有任务使用相同的架构和超级参数,甚至在培训单个模型时同时解决所有任务(多任务学习)。最后,我们表明,由于更好地利用标签语义,我们的框架也可以显着提高低资源制度的性能。
translated by 谷歌翻译
合成孔径雷达(SAR)图像是各种任务的有价值资产。在过去的几年里,许多网站以易于管理产品的形式免费提供它们,倾向于在S​​AR领域的广泛扩散和研究工作。这些机会的缺点是,这些图像可能会被恶意用户暴露于伪造和操纵,提高对他们的诚信和可信度的新担忧。到目前为止,多媒体取证文献提出了各种技术来定位自然照片中的操纵,但从未调查过SAR图像的完整性评估。此任务构成了新的挑战,因为SAR图像是由处理链完全不同于自然照片的图像。这意味着对于自然图像开发的许多取证方法不保证成功。在本文中,我们研究了SAR图像拼接定位问题的问题。我们的目标是本地化已经复制和粘贴了从另一个图像复制和粘贴的幅度SAR图像的区域,可能正在进行该过程中的某种编辑。为此,我们利用卷积神经网络(CNN)来提取在分析的输入的处理迹线中突出的指纹突出显示。然后,我们检查该指纹以产生二进制篡改掩模,指示拼接攻击下的像素区域。结果表明,我们提出的方法,针对SAR信号的性质量身定制,提供比为自然图像开发的最先进的法医工具更好的表现。
translated by 谷歌翻译
虽然多代理学习的进步使得能够培训越来越复杂的代理商,但大多数现有技术都产生了最终政策,该政策不旨在适应新的合作伙伴的战略。但是,我们希望我们的AI代理商根据周围的战略来调整他们的战略。在这项工作中,我们研究了有条件的多代理模仿学习问题,我们可以在培训时间访问联合轨迹演示,我们必须在测试时间与新合作伙伴进行互动并适应新伙伴。这种环境是具有挑战性的,因为我们必须推断新的合作伙伴的战略并使我们的政策适应该战略,而不是了解环境奖励或动态。我们将该条件多代理模仿学习的问题正式化,提出了一种解决可扩展性和数据稀缺的困难的新方法。我们的主要洞察力是,多种代理游戏的合作伙伴的变化通常很高,并且可以通过低秩子空间来表示。利用张量分解的工具,我们的模型在EGO和合作伙伴代理战略上学习了低秩子空间,然后是infers并通过插值在子空间中互动到新的合作伙伴策略。我们用混合协作任务的实验,包括匪徒,粒子和Hanabi环境。此外,我们还测试我们对超级烹饪游戏的用户学习中的真实人体合作​​伙伴的条件政策。与基线相比,我们的模型更好地适应新的合作伙伴,并强大地处理各种设置,从离散/持续的动作和静态/在线评估与AI / Lean Partners。
translated by 谷歌翻译
生物启发的六角形机器人是在艺术技术和应用中的机器人中相对年轻的分支。尽管它们的冗余设计具有高度的灵活性和适应性,但符合其能力的研究领域仍然非常缺乏。本文将被提出最先进的六足动物机器人特定控制架构,其允许完全控制机器人速度,身体方向和步行步态类型。此外,将深入研究地形互动,导致发展地形调整控制算法,该算法将允许机器人迅速地对地形形状和诸如工作空间内的非线性和非连续性作出反应。它将被呈现一个动态模型,导致源自六足球运动的解释与基本平台PKM机器相当,并且通过Matlab SimMechanicStm物理模拟验证所述模型。然后,可以开发一种能够识别腿部地形触摸和反应以确保运动稳定性的反馈控制系统。最后,据报道,来自基于Phantomx Ax Methal Hexapod Mark II机器人平台的实验活动来源的结果是通过Trossen织机织机械度。
translated by 谷歌翻译
在各种方法中,旨在使神经网络的学习程序更有效,科学界会根据其估计的复杂性来开发策略,以从较大的网络中蒸发蒸馏知识,或利用对抗机器学习背后的原则。最近提出了一个不同的想法,命名为友好培训,这包括通过增加自动估计的扰动来改变输入数据,其目标是促进神经分类器的学习过程。只要训练收益,转变就会逐渐消失,直到它完全消失。在这项工作中,我们重新审视并扩展了这个想法,引入了通过神经发电机在对抗机器学习的背景下的完全不同和新的方法的启发。我们提出了一种辅助多层网络,该网络负责改变输入数据,使得在训练过程的当前阶段可以更容易地处理分类器。辅助网络与神经分类器共同培训,因此本质上增加了分类器的“深度”,并且预计将在数据改变过程中发现一般规律。辅助网络的效果逐渐减少到训练结束时,当它完全下降时,分类器部署用于应用程序。我们将这种方法称为神经友好培训。涉及多个数据集和不同神经架构的扩展实验程序表明,神经友好培训克服了最初提出的友好培训技术,提高了分类器的泛化,特别是在嘈杂的数据的情况下。
translated by 谷歌翻译
高分辨率卫星图像中的对象检测是在许多环境和社会经济监测应用中的地面调查数据收集中的可扩展替代品。然而,由于购买图像和计算的高成本,对大型地理位置的对象检测仍然可能会昂贵。灵感来自传统调查数据收集策略,我们提出了一种通过抽样估计对象计数统计数据的方法。鉴于成本预算,我们的方法通过从学习的提案分布中抽样选择少量代表性区域。使用重要性采样,我们能够在处理仅与详尽的方法相比仅在图像的一小部分图像后准确估计对象计数。我们凭经验表明,拟议的框架在估计美国和非洲的建筑物数量,肯尼亚的汽车数量,在孟加拉国的砖窑和美国的游泳池中达到了强大的表现,同时需要少于0.01%的卫星图像彻底的方法。
translated by 谷歌翻译
太阳能无线电通量以及地磁指数是太阳能活动的重要指标及其效果。耀斑和地磁风暴等极端太阳能事件可能对低地轨道中的卫星的空间环境产生负面影响。因此,预测这些空间天气指数在太空运营和科学方面具有重要意义。在这项研究中,我们提出了一种基于长期短期内存神经网络的模型,以了解时间序列数据的分布,以便使用时间序列以及太阳能图像提供空间天气指标的同时多元27天预测数据。我们展示了30-40 \%的根均方误差改进了,而仅包括使用时间序列数据的太阳能图像数据,而单独使用时间序列数据。与训练有素的深神经网络模型相比,诸如持久性和运行平均预测之类的简单基线也将与训练有素的深神经网络模型进行比较。我们还使用模型集合量化我们预测中的不确定性。
translated by 谷歌翻译