在这项工作中,我们解决了4D面部表情生成的问题。通常,通过对中性3D面动画来达到表达峰,然后回到中立状态来解决这一问题。但是,在现实世界中,人们表现出更复杂的表情,并从一个表达式转换为另一种表达。因此,我们提出了一个新模型,该模型在不同表达式之间产生过渡,并综合了长长的4D表达式。这涉及三个子问题:(i)建模表达式的时间动力学,(ii)它们之间的学习过渡,以及(iii)变形通用网格。我们建议使用一组3D地标的运动编码表达式的时间演变,我们学会通过训练一个具有歧管值的gan(Motion3dgan)来生成。为了允许生成组成的表达式,该模型接受两个编码起始和结尾表达式的标签。网格的最终顺序是由稀疏的2块网格解码器(S2D-DEC)生成的,该解码器将地标位移映射到已知网格拓扑的密集,每位vertex位移。通过明确处理运动轨迹,该模型完全独立于身份。五个公共数据集的广泛实验表明,我们提出的方法在以前的解决方案方面带来了重大改进,同时保留了良好的概括以看不见数据。
translated by 谷歌翻译
深度学习的高级面部识别以实现前所未有的准确性。但是,了解面部的本地部分如何影响整体识别性能仍然不清楚。除其他外,面部掉期已经进行了实验,但只是为了整个脸。在本文中,我们建议交换面部零件,以剥夺不同面部零件(例如眼睛,鼻子和嘴巴)的识别相关性。在我们的方法中,通过拟合3D先验来交换从源面转换为目标的零件,该零件在零件之间建立密集的像素对应关系,同时还要处理姿势差异。然后,无缝克隆用于在映射的源区域和目标面的形状和肤色之间获得平滑的过渡。我们设计了一个实验协议,该协议使我们能够在通过深网进行分类时得出一些初步结论,表明眼睛和眉毛区域的突出性。可在https://github.com/clferrari/facepartsswap上找到代码
translated by 谷歌翻译
在这项工作中,我们详细描述了深度学习和计算机视觉如何帮助检测AirTender系统的故障事件,AirTender系统是售后摩托车阻尼系统组件。监测飞行员运行的最有效方法之一是在其表面上寻找油污渍。从实时图像开始,首先在摩托车悬架系统中检测到Airtender,然后二进制分类器确定Airtender是否在溢出油。该检测是在YOLO5架构的帮助下进行的,而分类是在适当设计的卷积神经网络油网40的帮助下进行的。为了更清楚地检测油的泄漏,我们用荧光染料稀释了荧光染料,激发波长峰值约为390 nm。然后用合适的紫外线LED照亮飞行员。整个系统是设计低成本检测设置的尝试。船上设备(例如迷你计算机)被放置在悬架系统附近,并连接到全高清摄像头框架架上。板载设备通过我们的神经网络算法,然后能够将AirTender定位并分类为正常功能(非泄漏图像)或异常(泄漏图像)。
translated by 谷歌翻译
对自动驾驶车辆性能的定量评估,交通模拟引起了很多兴趣。为了使模拟器成为有价值的测试工作台,要求对现场每个交通代理的驾驶策略动画,就像人类在保持最小安全保证的同时一样。从记录的人类驾驶数据或通过强化学习中学习交通代理的驾驶政策似乎是在不受控制的交叉路口或回旋处中产生现实且高度互动的交通状况的有吸引力的解决方案。在这项工作中,我们表明,在学习驾驶政策时模仿人类驾驶与保持安全性之间存在权衡。我们通过比较应用于驾驶任务时的各种模仿学习和强化学习算法的性能来做到这一点。我们还提出了一种多物镜学习算法(MOPPO),可以共同提高两个目标。我们在从交互数据集中提取的高度互动驾驶方案上测试驾驶政策,以评估它们的表现如何。
translated by 谷歌翻译
非破坏性测试(NDT)被广泛应用于制造和操作过程中涡轮组件的缺陷鉴定。操作效率是燃气轮机OEM(原始设备制造商)的关键。因此,在最小化所涉及的不确定性的同时,尽可能多地自动化检查过程至关重要。我们提出了一个基于视网膜的模型,以识别涡轮叶片X射线图像中的钻孔缺陷。该应用程序是由于大图分辨率而具有挑战性的,在这种分辨率上,缺陷非常小,几乎没有被常用的锚尺寸捕获,并且由于可用数据集的尺寸很小。实际上,所有这些问题在将基于深度学习的对象检测模型应用于工业缺陷数据中非常普遍。我们使用开源模型克服了此类问题,将输入图像分成图块并将其扩展,应用重型数据增强,并使用差分进化器求解器优化锚固尺寸和宽高比。我们用$ 3 $倍的交叉验证验证该模型,显示出非常高的精度,可以识别缺陷的图像。我们还定义了一组最佳实践,可以帮助其他从业者克服类似的挑战。
translated by 谷歌翻译
自我监督的单眼深度估计是一种有吸引力的解决方案,不需要难以供应的深度标签进行训练。卷积神经网络(CNN)最近在这项任务中取得了巨大成功。但是,他们的受欢迎的领域有限地限制了现有的网络体系结构,以便在本地进行推理,从而抑制了自我监督范式的有效性。鉴于Vision Transformers(VIT)最近取得的成功,我们提出了Monovit,这是一个崭新的框架,结合了VIT模型支持的全球推理以及自我监督的单眼深度估计的灵活性。通过将普通的卷积与变压器块相结合,我们的模型可以在本地和全球范围内推理,从而在较高的细节和准确性上产生深度预测,从而使MonoVit可以在已建立的Kitti数据集中实现最先进的性能。此外,Monovit证明了其在其他数据集(例如Make3D和Drivingstereo)上的出色概括能力。
translated by 谷歌翻译
我们介绍了队列舒适模型,这是一个新框架,用于预测新乘员如何看待其热环境。队列舒适模型利用从样本人群中收集的历史数据,这些数据具有一些潜在的偏好相似性,以预测新居民的热偏好反应。我们的框架能够利用可用的背景信息,例如物理特征和一次性的登机调查(对生活尺度的满意度,高度敏感的人尺度,五个个性特征)以及新乘员以及生理和环境传感器的测量值与热偏好响应配对。我们在两个公开可用的数据集中实施了框架,其中包含来自55人的纵向数据,其中包括6,000多个单独的热舒适调查。我们观察到,使用背景信息的队列舒适模型几乎没有变化的热偏好预测性能,但没有使用历史数据。另一方面,使用队列舒适模型的每个数据集占用人群的一半和三分之一的占用人群,而目标居民的历史数据较少,同类舒适模型将其热偏好预测增加了8〜 \%,平均为5〜 \%与对整个乘员人群进行训练的通用模型相比,某些乘员最多可容纳36点\%和46〜%。该框架以数据和站点不可知的方式呈现,其不同的组件很容易根据乘员和建筑物的数据可用性定制。队列舒适模型可能是迈向个性化的重要一步,而无需为每个新乘员开发个性化模型。
translated by 谷歌翻译
将不断发展的机器人暴露在可变条件下是必要的,以获取对环境变化且可以越过现实差距的解决方案。但是,我们尚无分析和理解环境变化对进化过程的影响的方法,因此可以选择合适的变化范围。在本文中,我们介绍了一种允许我们衡量环境变化的影响的方法,并分析了变化幅度,引入它们的方式以及不断发展的剂的性能和鲁棒性之间的关系。我们的结果表明,(i)进化算法可以忍受具有很大影响的环境变化,(ii)影响代理行为的变化要比影响代理商或环境和环境的初始状态,以及环境和环境的初始状态的变化要好得多。 (iii)通过多次评估提高健身措施的准确性并不总是有用的。此外,我们的结果表明,环境变化允许生成解决方案,这些解决方案在不同的环境和不变环境中都能更好地发挥作用。
translated by 谷歌翻译
可以与其他代理人互动以完成给定任务的自主代理的发展是人工智能和机器学习研究的核心领域。为了实现这一目标,自主代理研究小组开发了用于自主系统控制的新型机器学习算法,特别关注深度强化学习和多代理强化学习。研究问题包括可扩展的协调代理政策和代理间沟通;从有限观察的情况下对其他代理的行为,目标和组成的推理;以及基于内在动机,课程学习,因果推断和代表性学习的样品学习。本文概述了该小组正在进行的研究组合,并讨论了未来方向的开放问题。
translated by 谷歌翻译
有证据表明,诸如大脑之类的生物系统在噪声方面的临界状态稳健,因此能够在扰动下保持其中。在这项工作中,我们解决了关键系统对噪声的鲁棒性问题。特别是,我们研究了临界时随机细胞自动机(CA)的鲁棒性。随机CA是显示关键性的最简单随机模型之一。随机CA的过渡状态是通过一组概率来定义的。我们系统地扰动已知会产生关键行为的最佳随机CA的概率,我们报告说,这样的CA能够保持在一定程度的噪声中的关键状态。我们使用所得幂律拟合的误差指标(例如Kolmogorov-Smirnov统计量和Kullback-Leibler Divergence)介绍了结果。我们讨论了我们的结果在未来实现脑启发的人工智能系统的意义。
translated by 谷歌翻译