深度神经网络拥有的一个重要股权是在以前看不见的数据上对分发检测(OOD)进行强大的能力。在为现实世界应用程序部署模型时,此属性对于安全目的至关重要。最近的研究表明,概率的生成模型可以在这项任务上表现不佳,这令他们寻求估计培训数据的可能性。为了减轻这个问题,我们提出了对变分性自动化器(VAE)的指数倾斜的高斯先前分配。通过此之前,我们能够使用VAE自然分配的负面日志可能性来实现最先进的结果,同时比某些竞争方法快的数量级。我们还表明,我们的模型生产高质量的图像样本,这些样本比标准高斯VAE更清晰。新的先前分配具有非常简单的实现,它使用kullback leibler发散,该kullback leibler发散,该横向leibler发散,该分解比较潜伏向量的长度与球体的半径之间的差异。
translated by 谷歌翻译
强大的深度学习技术的发展为社会和个人带来了一些负面影响。一个这样的问题是假媒体的出现。为了解决这个问题,我们组织了可信赖的媒体挑战(TMC)来探讨人工智能(AI)如何利用如何打击假媒体。我们与挑战一起发布了一个挑战数据集,由4,380张假和2,563个真实视频组成。所有这些视频都伴随着Audios,采用不同的视频和/或音频操作方法来生产不同类型的假媒体。数据集中的视频具有各种持续时间,背景,照明,最小分辨率为360p,并且可能包含模拟传输误差和不良压缩的扰动。我们还开展了用户学习,以展示所作数据集的质量。结果表明,我们的数据集具有有希望的质量,可以在许多情况下欺骗人类参与者。
translated by 谷歌翻译
估算干预措施对患者结果的影响是个性化医学的关键方面之一。他们的推断经常受到训练数据仅包括给药治疗的结果,而不是用于替代治疗(所谓的反事实结果)。基于观察数据的这种情况,即〜对于连续和二进制结果变量,不适用干预的数据,建议了几种方法。然而,患者结果通常以时间对次的数据记录,如果在观察期内未发生事件,则包括右审查的事件时间。尽管他们的重要性巨大,时间令人难度的数据很少用于治疗优化。我们建议一种名为Bites的方法(用于存活数据的平衡个体治疗效果),其将特定的半导体Cox损耗与治疗平衡的深神经网络相结合;即,我们使用积分概率度量(IPM)正常化治疗和未治疗的患者之间的差异。我们在仿真研究中展示了这种方法优于现有技术。此外,我们在应用于乳腺癌患者队列的应用中证明可以基于六个常规参数进行激素治疗。我们成功验证了独立的队列中的这一发现。提供叮咬作为易于使用的Python实现。
translated by 谷歌翻译
机器学习,在深入学习的进步,在过去分析时间序列方面表现出巨大的潜力。但是,在许多情况下,可以通过将其结合到学习方法中可能改善预测的附加信息。这对于由例如例如传感器位置的传感器网络而产生的数据至关重要。然后,可以通过通过图形结构建模,以及顺序(时间)信息来利用这种空间信息。适应深度学习的最新进展在各种图形相关任务中表明了有希望的潜力。但是,这些方法尚未在很大程度上适用于时间序列相关任务。具体而言,大多数尝试基本上围绕空间 - 时间图形神经网络巩固了时间序列预测的小序列长度。通常,这些架构不适合包含大数据序列的回归或分类任务。因此,在这项工作中,我们使用图形神经网络的好处提出了一种能够在多变量时间序列回归任务中处理这些长序列的架构。我们的模型在包含地震波形的两个地震数据集上进行测试,其中目标是预测在一组站的地面摇动的强度测量。我们的研究结果表明了我们的方法的有希望的结果,这是深入讨论的额外消融研究。
translated by 谷歌翻译
宇宙学调查实验中的数据处理和分析管道引入了数据扰动,可以显着降低基于深度学习的模型的性能。鉴于加工和分析宇宙学调查数据的监督深度学习方法的增加,数据扰动效应的评估以及增加模型稳健性的方法的发展越来越重要。在星系形态分类的背景下,我们研究了扰动在成像数据中的影响。特别是,我们在基线数据培训和扰动数据测试时检查使用神经网络的后果。我们考虑与两个主要来源相关的扰动:1)通过泊松噪声和2)诸如图像压缩或望远镜误差的图像压缩或望远粉误差所产生的步骤所产生的数据处理噪声提高了观测噪声。我们还测试了域适应技术在减轻扰动驱动误差时的功效。我们使用分类准确性,潜在空间可视化和潜在空间距离来评估模型稳健性。如果没有域适应,我们发现处理像素级别错误容易将分类翻转成一个不正确的类,并且更高的观察噪声使得模型在低噪声数据上培训无法对Galaxy形态进行分类。另一方面,我们表明,具有域适应的培训改善了模型稳健性并减轻了这些扰动的影响,以更高的观测噪声的数据提高了23%的分类精度。域适应也增加了基线与错误分类的错误分类的潜在空间距离〜2.3的倍数距离,使模型更强大地扰动。
translated by 谷歌翻译
贝叶斯优化已被证明是优化昂贵至尊评估系统的有效方法。然而,根据单一观察的成本,一个或多个目标的多维优化可能仍然是昂贵的。多保真优化通过包括多个更便宜的信息来源,例如数值模拟中的低分辨率近似来解决这个问题。用于多保真优化的采集功能通常基于勘探重算法,这些算法难以与多种目标的优化结合。在这里,我们认为预期的超越改善政策可以在许多情况下作为合适的替代品起作用。我们通过两步评估或在单个采集函数内纳入评估成本,额外的保真相关目标。这允许同时多目标和多保真优化,这允许以分数成本准确地建立帕累托集和前部。基准显示成本降低了一个数量级或更多的顺序。因此,我们的方法允许极其膨胀的黑盒功能进行静态优化。在现有的优化贝叶斯优化框架中实现了本方法简单且直接,可以立即扩展到批量优化。该技术还可用于组合不同的连续和/或离散保真度尺寸,这使得它们特别相关地与等离子体物理,流体动力学和许多科学计算分支中的模拟问题相关。
translated by 谷歌翻译
临床信息系统已成为半结构注释的医疗保健数据的大存储库,该数据已达到临界质量,使其成为监督数据驱动的神经网络方法的有趣。我们使用疾病(ICD-10)的国际分类来探讨了50个字符的长期临床问题列表条目的自动编码,并在前100个ICD-10三位数代码上评估了三种不同类型的网络架构。FastText基线达到0.83的宏观平均f1度量,然后是具有0.84的宏平均f1测量的字符级LSTM。使用自定义语言模型,Top执行是一个下游的Roberta模型,具有0.88的宏观平均f1-measure。一种神经网络激活分析以及对假阳性和假阴性的调查揭示了不一致的手动编码作为主要限制因素。
translated by 谷歌翻译
对森林生物量股票的知识及其发展对于实施有效的气候变化缓解措施是重要的。需要研究驾驶AF的过程,重新砍伐和森林砍伐,是碳核算的先决条件。使用空机激光雷达的遥感可用于测量大规模植被生物量。我们呈现深度学习系统,用于预测木材体积,地上生物量(AGB),随后直接从3D LIDAR点云数据碳。我们设计了不同的神经网络架构进行点云回归,并在遥感数据上评估AGB估计从国家森林库存中的现场测量获得的遥感数据。我们对回归的Minkowski卷积神经网络的调整给出了最佳结果。与在Point云的基本统计中运营的最先进的方法相比,深度神经网络产生了明显更准确的木材体积,AGB和碳估计,我们希望这一发现对基于LIDAR的分析产生了强烈影响陆地生态系统动态。
translated by 谷歌翻译
这项工作提出了一种分散的架构,其中个别代理旨在解决分类问题,同时观察不同尺寸的流特征,并从可能不同的分布产生。在社会学习的背景下,已经开发了几种有用的策略,通过跨分布式代理的本地合作解决了决策问题,并允许他们从流数据中学习。然而,传统的社会学习策略依赖于每个代理人对观察结果分布的重要知识的基本假设。在这项工作中,我们通过引入一种机器学习框架来克服这一问题,该机器学习框架利用图形的社交交互,导致分布式分类问题的完全数据驱动的解决方案。在拟议的社交机器学习(SML)策略中,存在两个阶段:在训练阶段,分类器被独立培训,以使用有限数量的训练样本来产生一组假设的信念;在预测阶段,分类器评估流媒体未标记的观察,并与邻近分类器共享他们的瞬时信仰。我们表明SML策略使得代理能够在这种高度异构的环境下一致地学习,并且即使在预测阶段决定未标记的样本时,即使在预测阶段也允许网络继续学习。预测决策用于以明显不同的方式不断地提高性能,这些方式与大多数现有的静态分类方案不同,在培训之后,未标记数据的决策不会重新用于改善未来的性能。
translated by 谷歌翻译
神经密度估计值证明在各种研究领域进行高效的仿真贝叶斯推理方面具有显着强大。特别是,Bayesflow框架使用两步方法来实现在仿真程序隐式地定义似然函数的设置中的摊销参数估计。但是当模拟是现实差的差异时,这种推断是多么忠实?在本文中,我们概念化了基于模拟的推论中出现的模型误操作的类型,并系统地研究了这些误操作下的Bayesflow框架的性能。我们提出了一个增强优化目标,它对潜伏数据空间上的概率结构施加了概率结构,并利用了最大平均差异(MMD)来检测推理期间的可能灾难性的误操作,破坏了所获得的结果的有效性。我们验证了许多人工和现实的误操作的检测标准,从玩具共轭模型到复杂的决策和疾病爆发动态的复杂模型应用于实际数据。此外,我们表明后部推理误差随着真实数据生成分布与潜在摘要空间中的典型模拟集之间的常数而增加。因此,我们展示了MMD的双重实用性作为检测模型误操作的方法和作为验证摊销贝叶斯推理的忠实性的代理。
translated by 谷歌翻译